محققان چینی موفق به ساخت ورقهای فلزی ۱۰۰۰۰۰ برابر نازکتر از موی انسان شدهاند که میتوانند وسایل الکترونیکی را متحول کنند.
به گزارش ایسنا، دانشمندان ورقههای فلزی آن چنان نازکی ساختهاند که تنها چند اتم ضخامت دارند.
بر اساس یک مطالعه جدید، محققان با استفاده از روش جدید خود، صفحات دو بعدی از بیسموت، گالیم، ایندیم، قلع و سرب ساختهاند که صد هزار بار نازکتر از موی انسان است.
به نقل از آیای، این ورقهای فلزی فوق نازک که توسط محققان آکادمی فیزیک چین ساخته شدهاند، رسانایی الکتریکی فوقالعاده بالایی نیز دارند.
دانشمندان نشان دادهاند که وقتی فلزات نازک میشوند تا ورقههایی با ضخامت یک یا چند اتم بسازند، به دلیل پدیدهای به نام محصور شدن کوانتومی، خواص آنها به شدت تغییر میکند.
این مطالعه که در مجله Nature منتشر شده است، نشان میدهد که خواص حاصل به طور بالقوه مفید هستند، اما تثبیت چنین فلزات دو بعدی در ابعاد میکرومتری یا اندازههای بزرگتر دشوار است، زیرا اتمها تمایل دارند آرایشهای سه بعدی طبیعی خود را حفظ کنند و به آسانی در هوا اکسید شوند.
در این فرآیند جدید دانشمندان چینی برای فشردن فلزات تا ضخامت اتمی از یک پرس هیدرولیک استفاده میکند.
بر اساس این مطالعه، رویکرد فناورانه ساده آنها، بلورهای دوبعدی پایدار در هوا با ابعاد بیش از ۱۰۰ میکرومتر را تولید میکند که پیشرفت قابلتوجهی نسبت به آنچه میتوان با استفاده از تکنیکهای گرانتر و پیچیدهتر ساخت، است.
محققان نشان دادند که این روش را میتوان برای هر فلزی با نقطه ذوب پایین اعمال کرد.
یک بررسی کننده تاکید کرد که این تیم چینی اولین تیمی نیست که فلزات نازک اتمی تولید میکند. با این حال، نتایج آنها برجسته است، چرا که روش جدید آنها «فلزات در مقیاس بزرگ و واقعاً دو بعدی» را در مقایسه با تکنیکهای قبلی تولید میکند.
خاویر سانچز یاماگیشی(Javier Sanchez-Yamagishi)، فیزیکدانی که مواد دو بعدی را در دانشگاه کالیفرنیا مطالعه میکند، میگوید: این فقط یک نقطه شروع است.
وی همچنین تاکید کرد که پایداری و اندازه بزرگ این مواد، امکانات زیادی را برای ادغام آنها با مواد دیگر و ساخت وسایل الکتریکی یا فوتونیک جدید باز میکند.
برخی کارشناسان بر این باورند که این شاهکار میتواند منجر به یک انقلاب در شیوه ساخت دستگاههای الکترونیکی، از ترانزیستورهای کممصرف گرفته تا تراشههای نسل جدید و آشکارسازهای فوق حساس شود.
به گزارش رسانههای چینی، این تیم با بهکارگیری روش خود، ورقههایی از پنج فلز مختلف با ضخامت چند اتم، با عرض چند صد میکرومتر ایجاد کرد که برای مادهای بسیار نازک بسیار بزرگ است.
این تیم برای ساختن یک ورق فلزی بسیار نازک، یک قطره از فلز را بین دو سندان یاقوت کبود که با سرد شدن فلز به هم فشرده شده بودند، گرم کردند. از آنجایی که MoS۲ با فلز قویتر از یاقوت کبود برهمکنش میکند، محققان میتوانند ساندویچ حاصل از ورقههای MoS۲-metal-MoS۲ را از دستگاه پرس بیرون بیاورند.
گوانگیو ژانگ(Guangyu Zhang) از آکادمی علوم چین در پکن که روی نانومواد مطالعه میکند به همراه همکارانش، ورقههایی از پنج فلز مختلف با ضخامت چند اتم و عرض چند صد میکرومتر ساختهاند که برای مادهای بسیار نازک، بسیار بزرگ است.
فضانوردان میتوانند غبار ماه را با ماهوارههای قدیمی مخلوط کنند تا سوخت بسازند.
به گزارش ایسنا، خاکی که مستقیما از سطح ماه منشا میگیرد میتواند به فضانوردان کمک کند تا حضور دائمی روی ماه داشته باشند.
به نقل از اسپیس، انتقال مواد از زمین برای ایجاد زیرساختهای قمری، تلاشی پرهزینه و زمانبر خواهد بود. بنابراین، در عوض، محققان آزمایشگاه تحقیقات انرژی نوظهور دانشگاه واترلو (LEER) نشان میدهند که خاک ماه که لایه بالایی خاک و غبار ماه است به عنوان یک منبع محلی در دسترس میتواند به مواد قابل استفاده برای پشتیبانی از حیات، تولید انرژی و ایجاد زیستگاههای طولانی مدت تبدیل شود.
کانر مک رابی(Connor MacRobbie)، نویسنده ارشد این مطالعه اخیر، در بیانیهای از دانشگاه گفت: خاک قمری حاوی مقدار زیادی غبار فلزی است که دارای اکسیژن است. بنابراین ما میتوانیم بدون نیاز به اکسیژن اتمسفر، از آن برای تولید انرژی حرارتی استفاده کنیم.
این واکنش ترمیت نامیده میشود که در فضا مفید است زیرا اکسیژن به راحتی در دسترس نیست. محققان ترکیبهای مختلف سوخت و ترکیبات اکسید کننده را برای بهینهسازی واکنش ترمیت برای کاربردهای مختلف مبتنی بر فضا، مانند گرمایش و ساخت، آزمایش کردند. آزمایشهای آنها در یک محفظه احتراق طراحی شده برای شبیهسازی محیط ماه انجام شد.
جان ون(John Wen)، مدیر آزمایشگاه تحقیقات انرژی نوظهور دانشگاه واترلو و یکی از نویسندگان این مطالعه، در بیانیهای گفت: نتایج نشان میدهد که خاک سطحی ماه، انسانها را قادر میسازد تا سطح ماه را کاوش کرده و در آن ساکن شوند.
ما در حال حاضر به طور مداوم در حال کار بر روی استخراج بهتر فلز و سایر مواد مفید از خاک ماه و همچنین طراحی فرآیندهای خودکار، با همکاری محققان کانادایی و بینالمللی، برای تسهیل استفاده از منابع در محل و حمایت از اقتصاد فضای دایرهای هستیم.
برای این منظور، محققان همچنین از آلومینیوم ماهوارههای از بین رفته در ترکیب با خاک قمری برای ایجاد یک واکنش ترمیت که گرما تولید میکند، استفاده کردهاند. بازیافت مواد ماهوارهای برای ایجاد منبع سوخت نه تنها به ساخت زیرساختهای ماه کمک میکند، بلکه به کاهش مسئله فزاینده زبالههای فضایی نیز کمک میکند، که اغلب در مدار زمین و ماه قرار میگیرند.
مک رابی(MacRobbie) در این بیانیه گفت: تحقیق ما در حال تبدیل داستانهای علمی تخیلی به واقعیت است. هدف ما کمک به ساخت زیرساختها و فناوریهایی است که امکان استقرار پایدار انسان در ماه و فراتر از آن را فراهم میکند.
عصر ایران - آهنربا ماده یا جسمی است که میدان مغناطیسی تولید می کند. این میدان مغناطیسی نامرئی مسئول قابل توجهترین ویژگی آهنربا است: نیرویی که به مواد فرومغناطیس دیگر مانند آهن، فولاد، نیکل، کبالت و غیره وارد می شود و آهنرباهای دیگر را جذب یا دفع می کند.
آهنربا می تواند دائمی باشد که میدان مغناطیسی ثابت دارد، یا الکترومگنت (آهنربای الکتریکی) باشد که با اعمال جریان الکتریکی ایجاد می شود.
اَبَرآهنربا (Super magnet) به طور کلی اصطلاحی است که برای آهنربای نئودیمیوم (Neodymium magnet)، قویترین آهنرباهای دائمی که به صورت تجاری در دسترس است، استفاده می شود. همچنین، اَبَرآهنربا می تواند به یک آهنربای الکتریکی قدرتمند اشاره داشته باشد.
دو اَبَرآهنربا را به هم نزدیک نکنید!
آهنرباهای نئودیمیوم به اندازه ای قوی هستند که عدم رعایت نکات ایمنی هنگام کار با آنها می تواند به بروز آسیب دیدگی برای انسان منجر شود.
آهنرباهای نئودیمیوم شناخته شدهترین و پر استفادهترین اَبَرآهنربا هستند که از آلیاژ نئودیمیوم، آهن، و بور برای شکل گیری ساختار Nd2Fe14B ساخته می شوند.
یک آهنربای نئودیمیوم به طور معمول ظاهری شبیه فولاد ضدزنگ پولیش خورده دارد. این آهنربا می توانند تا 1300 برابر وزن خود را نگه دارند. این به معنای آن است که یک آهنربای نئودیمیوم یک گرمی می تواند یک کره آهنی تا وزن 1.3 کیلوگرم را نگه دارد.
برخورد دو اَبَرآهنربا با یکدیگر می تواند موجب بروز جرقه شود زیرا میدان های مغناطیسی با هم ترکیب شده و موجب حرکت بارهای الکتریکی می شود. اما باید به این نکته اشاره داشت که خود اَبَرآهنرباها هنگام برخورد آتش نمی گیرند یا نمی سوزند. جرقه ها پدیده ای کوتاه مدت هستند و همانگونه که اشاره شد حاصل تعامل میدان های مغناطیسی و حرکت بار است.
عصر ایران - آیا تا به حال درباره آلیاژهای فلزی حافظهدار چیزی شنیده اید؟ برخی فلزات می توانند شکل اولیه خود را به خاطر سپرده و در صورت تغییر شکل در حضور محرکی مانند گرما به شکل پیشین خود باز گردند.
آلیاژهای حافظهدار شکلی (Shape Memory Alloy) گروهی از آلیاژها هستند که می توانند زیر میزان مشخصی از تنش و گرما به شکل و اندازه پیشین خود بازگردند. آلیاژهای حافظهدار شکلی از الاستیسیته (ویژگی تغییر شکل بازگشتپذیر) بالایی برخوردار هستند. این ویژگی با دو فاز بین فلزی منحصر به فرد آستنیت و مارتنزیت مرتبط است.
آلیاژهای حافظهدار با قرار گرفتن در معرض گرما می توانند تغییر شکل دهند، از این رو، می توانند کارایی بالایی داشته باشند. در واقع، این امکان فراهم می شود تا از آنها برای تبدیل انرژی حرارتی به انرژی مکانیکی استفاده کرد. به عنوان نمونه، با استفاده از سیم ساخته شده از آلیاژ حافظهدار می توانید یک پیشرانه بسازید.
از جمله آلیاژهای حافظهدار می توان به موارد زیر اشاره کرد:نیتینول(نیکل-تیتانیوم) یا NiTi: نیکل و تیتانیوم از مهمترین و شناخته شدهترین عناصر مورد استفاده در آلیاژهای حافظهدار هستند. پرکاربردترین آلیاژ این دو عنصر با نام "نیتینول" شناخته می شود. این آلیاژ از خواص مکانیکی عالی برخوردار است.
آلیاژهای Cu-Al-Ni، Fe-Mn-Si، و Cu-Zn-Al: خواص مکانیکی این ترکیبات نسبت به نیتینول ضعیفتر است و همچنان در حال توسعه هستند.
نیکل-منگنز-گالیوم (Ni-Mn-Ga): از آلیاژهای حافظهدار مغناطیسی هستند که به جای دما زیر تاثیر میدان های مغناطیسی قرار می گیرند. این آلیاژها نیز در حال توسعه هستند.
اثر حافظه شکلی (Shape Memory Effect) آن چیزی است که به آلیاژ حافظهدار امکان بازگشت به شکل اولیه خود پس از گرم شدن را می دهد. اثر حافظه شکلی در واقع یک فرآیند تبدیل فاز مارتنزیت به آستنیت ناشی از گرما است. این تغییر فاز موجب بازگشت ماده به شکل اولیه خود می شود.
انعطافپذیری بالا یکی دیگر از ویژگی های آلیاژهای حافظهدار است. از آنجایی که کشیدگی پیوندهای اتمی رخ نمی دهد، انعطافپذیری این آلیاژها به نام شبه الاستیسیته یا الاستیسته کاذب نیز شناخته می شود.
آلیاژهای حافظهدار در زمینه ساخت تجهیزات پزشکی از جمله برای ارتوپدی، مغز و اعصاب، قلب و عروق، لوازم و وسایل دندانپزشکی، ایمپلنت ها و همچنین فریم عینک ها، دستگاه های ایمنی حساس به دما و سیم های راهنما کاربرد دارند.
به عنوان نمونه، از ویژگی شبه الاستیسیته آلیاژهای حافظهدار در ارتودنسی استفاده می شود. از سیم های نایتینول برای ثابت نگه داشتن براکت ها استفاده می شود. همچنین، با استفاده از اثر حافظه شکلی، می توان از آلیاژهای حافظهدار برای ساخت استنت ها استفاده کرد که برای باز کردن رگ های خونی و پاکسازی گرفتگی رگ های خونی کاربرد دارند.