واحد مشترک کمکی پژوهش و مهندسی «هوش یار-تواندار»     (HT-CSURE)

واحد مشترک کمکی پژوهش و مهندسی «هوش یار-تواندار» (HT-CSURE)

Hooshyar-Tavandar Common Subsidiary Unit for Research & Engineering
واحد مشترک کمکی پژوهش و مهندسی «هوش یار-تواندار»     (HT-CSURE)

واحد مشترک کمکی پژوهش و مهندسی «هوش یار-تواندار» (HT-CSURE)

Hooshyar-Tavandar Common Subsidiary Unit for Research & Engineering

تامین گرمای شهرها با انرژی زباله‌سوزی پاک + نمونه‌های پیشتاز

تامین گرمای شهرها با انرژی زباله‌سوزی پاک + نمونه‌های پیشتاز
افزایش شهرنشینی و چالش‌های زیست‌محیطی، مدیریت زباله و تأمین انرژی را به مسئله‌ حیاتی در جوامع مدرن تبدیل کرده است. یکی از نوآوری‌های برجسته در این زمینه، استفاده از فناوری انرژی زباله‌سوزی است که از پسماند غیرقابل‌بازیافت انرژی تولید می‌کند و گرمایش و برق ساختمان‌های مسکونی و صنعتی را تأمین می‌کند.

پیشرفت صنعت و افزایش سریع جمعیت در سراسر جهان، مسئله مدیریت زباله را به یکی از چالش‌های جدی و حیاتی تبدیل کرده است و بسیاری از کشورها برای حل این مسئله به استفاده از فناوری‌های نوین در زمینه انرژی زباله‌سوزی (Waste-to-Energy) روی آورده‌اند. پیشینه انرژی زباله‌سوزی به دهه‌ها قبل بازمی‌گردد، زمانی که جوامع محلی در آمریکا، اروپا و آسیا برای مدیریت زباله‌های خود به سوزاندن زباله‌ها به‌عنوان یک راه‌حل روی آوردند.

به گزارش ایمنا، نخستین نیروگاه‌های زباله‌سوزی اوایل قرن بیستم در اروپا و ایالات متحده آمریکا و با هدف کاهش حجم زباله‌ها و تولید انرژی از این فرایند راه‌اندازی شد. با پیشرفت فناوری و افزایش آگاهی درباره مسائل زیست‌محیطی، روش‌های سوزاندن زباله بهبود یافت و استانداردهای زیست‌محیطی سخت‌تری برای آن وضع شد، امروزه انرژی زباله‌سوزی به‌عنوان یک منبع تجدیدپذیر برای تولید برق و گرمای محله‌های شهری در بسیاری از کشورها به‌کار می‌رود و به مدیریت بهینه پسماند و کاهش وابستگی به سوخت‌های فسیلی کمک می‌کند.

مفاهیم پایه‌ای انرژی زباله‌سوزی

انرژی زباله‌سوزی به فرایند تولید انرژی از پسماند غیرقابل بازیافت اطلاق می‌شود که شامل سوزاندن زباله در شرایط کنترل‌شده، تولید گرما و در نهایت تبدیل آن به انرژی الکتریکی یا گرمایی است. این روش علاوه‌بر کمک به کاهش حجم پسماند، منبعی مطمئن و پایدار را برای تأمین انرژی در جوامع محلی فراهم می‌آورد.

پسماند جامد شهری و صنعتی شامل مخلوطی از مواد غنی از انرژی همچون کاغذ، پلاستیک، زباله‌های محوطه و محصولات ساخته‌شده از چوب، به‌منظور کاهش حجم پسماند در محل‌های دفن زباله، در نیروگاه‌های زباله‌سوزی سوزانده می‌شود تا به خاکستر و گازهای داغ تبدیل شود. گزارش‌ها نشان می‌دهد که از هر ۴۵ کیلوگرم پسماند حدود ۳۸ کیلوگرم می‌تواند به‌عنوان سوخت برای تولید برق سوزانده شود. کارخانه‌های تبدیل زباله به انرژی، ۹۰۰ کیلوگرم زباله را به خاکستری تبدیل می‌کند که وزن آن بین ۱۳۰ تا ۲۷۰ کیلوگرم است و به این ترتیب حجم زباله را تا حدود ۸۷ درصد کاهش می‌دهد.

انرژی حاصل از سوزاندن به صورت گرمایی است که بخشی از آن به‌وسیله توربین‌های بخار یا بویلرها به انرژی الکتریکی تبدیل می‌شود. پیش از سوزاندن، امکان جداسازی و بازیابی مواد قابل بازیافت همچون فلزات و پلاستیک‌ها وجود دارد و علاوه بر آن، سیستم‌های مدرن به تجهیزاتی برای کنترل آلودگی هوا و گازهای سمی مجهز شده است که شامل فیلترهای ذرات، خنثی‌کننده‌ها و سیستم‌های تهویه است.

تامین گرمای شهرها با انرژی زباله‌سوزی پاک + نمونه‌های پیشتاز

چرخه زندگی و مزایای انرژی زباله‌سوزی

استفاده از فناوری انرژی زباله‌سوزی فقط به‌معنای کاهش زباله نیست، بلکه به بهبود استفاده از منابع محیطی و ارتقای کیفیت زندگی افراد در جوامع محلی منجر می‌شود. سوزاندن زباله‌ها به کاهش حجم آن‌ها کمک می‌کند و بستر لازم برای کاهش فضای دفن زباله را فراهم می‌آورد. این فرایند به تولید برق و گرما از زباله‌های غیرقابل بازیافت کمک و منابع جدیدی را برای تأمین انرژی ایجاد می‌کند که نتیجه آن کاهش انتشار گازهای مضر و جبران آلودگی‌های ناشی از سوزاندن زباله‌ها است.

راه‌اندازی و نگهداری از نیروگاه‌های زباله‌سوزی به ایجاد فرصت‌های شغلی کمک می‌کند و اقتصاد محلی را ارتقا می‌دهد. بسیاری از نیروگاه‌های زباله‌سوزی، کارگاه‌های آموزشی و رویدادهای اجتماعی را برگزار می‌کنند و از این طریق به افزایش آگاهی عمومی درباره مدیریت پسماند کمک می‌کنند.

چالش‌ها و موانع

نیروگاه‌های زباله‌سوزی با وجود مزایای بسیار، با چالش‌هایی نیز روبه‌رو هستند که نخستین مورد نگرانی افراد از آلودگی‌های ممکن ناشی از سوزاندن زباله و تأثیرات آن بر سلامت انسان است، به همین دلیل نیروگاه‌های مدرن باید با استانداردهای زیست‌محیطی و بهداشتی سختگیرانه‌ای هماهنگ شوند که ممکن است زمان‌بر و پیچیده باشد.

سرمایه‌گذاری اولیه برای راه‌اندازی نیروگاه‌های زباله‌سوزی بسیار بالا است و نیاز به حمایت‌های مالی و بین‌المللی دارد. با تداوم تحقیق و پیشرفت فناوری، استفاده از انرژی زباله‌سوزی می‌تواند به راه‌حلی پایدار و قابل اعتماد برای چالش‌های زباله در آینده تبدیل شود و دگرگونی مثبتی در نحوه مدیریت پسماند و تأمین انرژی در سراسر جهان ایجاد کند.

در حال حاضر حدود ۱۰ درصد از انرژی تأمین‌شده برای شبکه‌های گرمایشی منطقه‌ای در اروپا از نیروگاه‌های زباله‌سوزی به‌دست می‌آید، به‌ویژه در کشورهای شمال اروپا به دلیل کمبود منابع طبیعی انرژی و نیاز به گرما در زمستان‌های سرد، از اهمیت ویژه‌ای برخوردار است. نیروگاه‌های زباله‌سوزی مدرن به‌خوبی با محیط اطراف خود یکپارچه می‌شود و به‌عنوان فضای اجتماعی و فرهنگی در جوامع میزبان خود شناخته می‌شود و به این ترتیب در ارتقای شرایط جامعه نقش فعالی دارد. در ادامه به نمونه‌های قابل‌توجهی از نیروگاه‌های زباله‌سوزی اشاره می‌شود که نقش بسزایی در محافظت از محیط زیست و کاهش ردپای کربن دارد.

نیروگاه Sysav در مالمو، سوئد

تجربه‌ای موفق از انرژی زباله‌سوزی با استفاده از فناوری‌های پیشرفته در سیستم مدیریت زباله سوئد وجود دارد. در این کشور اسکاندیناوی، نرخ بازیافت پسماند بسیار بالا است و تنها یک درصد از زباله‌های شهری به محل دفن زباله ارسال می‌شود. پسماندها به جای ارسال به محل دفن، به‌عنوان سوخت در سیستم گرمایش منطقه‌ای استفاده می‌شود و نیازهای گرمایشی یک میلیون و ۲۵۰ هزار آپارتمان را برآورده می‌کند. نیروگاه Sysav واقع در مالمو با ظرفیت پردازش حدود ۶۰۰ هزار تن زباله در سال، یکی از بزرگ‌ترین و کارآمدترین نیروگاه‌های زباله‌سوزی در اروپا به‌شمار می‌رود. این نیروگاه حدود ۶۰ درصد از نیازهای گرمایشی شهر ۳۰۰ هزار نفری مالمو را تأمین می‌کند.

نیروگاه Sysav سیستم‌های پیشرفته‌ای برای مدیریت و کنترل آلودگی را به کار می‌برد تا به استانداردهای زیست‌محیطی بالا پایبند باشد. علاوه‌بر این، Sysav در برنامه‌های آموزشی محلی مشارکت دارد و به‌عنوان مرکز برگزاری رویدادهای فرهنگی و هنری شناخته می‌شود و از این راه به ترویج آگاهی اجتماعی در زمینه مدیریت زباله کمک می‌کند.

نیروگاه Rea Dalmine در برگامو، ایتالیا

نیروگاه Rea Dalmine با راندمان بیش از ۲۷ درصد، یکی دیگر از پروژه‌های موفق در ایتالیا همچنین اروپا است که در شهر برگامو تأسیس شده است. این نیروگاه نه‌تنها به‌عنوان یک الگوی پیشرفته در مدیریت زباله عمل می‌کند، بلکه به افزایش پایداری زیست‌محیطی و کاهش انتشار گازهای گلخانه‌ای کمک قابل‌توجهی کرده است.

این نیروگاه در سال ۲۰۲۰ گرمای تولیدی موردنیاز برای شبکه گرمایش منطقه‌ای را به میزان ۵۰ درصد افزایش داد که معادل کاهش ۱۴ هزار و ۵۰۰ تن دی‌اکسید کربن در سال است. خط تصفیه بخار نوآورانه این نیروگاه عاملی است که استفاده از آب را در تمام فرایندهای زباله‌سوزی و تولید انرژی به صفر رسانده است و به حفظ این منبع حیاتی کمک می‌کند.

گرمای بازیافتی حاصل از این نیروگاه به ایستگاه پمپاژ شبکه گرمایش منطقه‌ای متصل است که امکان استفاده سایر مناطق شهر از جمله محله‌های کلونیولا، مالپنساتا و سن‌توماسو را فراهم می‌کند. یک انبار حرارتی برای مدیریت گرمایش همه ساختمان‌های مجهز به سیستم گرمایش متمرکز طراحی شده است که می‌تواند به شبکه متصل شود.

معماری این نیروگاه از نظر زیبایی‌شناسی مورد توجه بسیاری از مسئولان قرار گرفته است و به‌عنوان یک نقطه عطف در شهر برگامو شناخته می‌شود. Rea Dalmine با ارائه اطلاعات به‌روز و شفاف درباره فرایندهای خود از طریق وبگاه رسمی، ارتباط نزدیکی با جامعه محلی برقرار می‌کند و به این روش همکاری شهروندان را در جمع‌آوری پسماند قابل بازیافت ارتقا می‌دهد.

نیروگاه Giubiasco در بلینزونا، سوئیس

نیروگاه Giubiasco در دامنه‌های آلپ سوئیس نمونه دیگری از عملکرد مؤثر انرژی زباله‌سوزی است. این نیروگاه که با هدف حل مشکلات دفع و صادرات پرهزینه زباله به سایر مناطق سوئیس در سال ۲۰۰۹ ایجاد شد، سالانه حدود ۱۶۰ هزار تن زباله را پردازش و به انرژی گرمایی و الکتریکی تبدیل می‌کند.

انرژی الکتریکی تولیدی این نیروگاه به شبکه برق ملی متصل است و نیازهای حدود ۲۳ هزار خانوار سوئیسی را تأمین می‌کند. این نیروگاه که با تکیه بر فناوری‌های مدرن و با حداقل تأثیر زیست‌محیطی به تولید گرما و برق مورد نیاز مناطق اطراف کمک می‌کند، به‌عنوان یک الگوی موفق در مدیریت پسماند اروپا مورد توجه قرار گرفته است.

نیروگاه Amager Bakke در کپنهاگ، دانمارک

نیروگاه Amager Bakke با امکانات فوق‌العاده در کپنهاگ، به‌عنوان یک الگوی پیشرفته در مدیریت زباله و تولید انرژی در سراسر جهان شناخته می‌شود. این نیروگاه علاوه‌بر اینکه جایگزینی برای استفاده از سوخت‌های فسیلی در انرژی حرارتی محسوب می‌شود، به‌عنوان یک مرکز اجتماعی و فرهنگی نیز عمل می‌کند. این نیروگاه حدود ۶۴۵ هزار نفر و ۶۸ هزار شرکت را در حوزه خود تحت پوشش قرار می‌دهد و برق ۸۰ هزار خانوار و گرمای مورد نیاز ۹۰ هزار آپارتمان را تأمین می‌کند.

نیروگاه کپنهاگ با نام «کپن‌هیل (Copenhill)» نیز شناخته می‌شود، چرا که ارتفاع آن به ۱۰۰ متر می‌رسد و پشت‌بام قابل دسترس آن پوشیده از پوشش گیاهی است که برای پیاده‌روی بسیار مناسب است. کپن‌هیل شامل بلندترین دیواره کوهنوردی مصنوعی جهان و یک پیست اسکی نیز هست که به‌عنوان یک جاذبه گردشگری، به محلی برای تجمع خانواده‌ها و جوانان تبدیل شده است.

نیروگاه Kawasaki در کاوازاکی، ژاپن

نیروگاه زباله‌سوزی کاوازاکی به‌عنوان یکی از جدیدترین و مدرن‌ترین نیروگاه‌های زباله‌سوزی در ژاپن شناخته می‌شود در سال ۲۰۰۱ با فناوری‌های پیشرفته طراحی شد و یکی از بزرگ‌ترین و پیشرفته‌ترین نیروگاه‌های زباله‌سوزی جهان به‌شمار می‌آید. این نیروگاه ظرفیت سوزاندن حدود ۸۰۰ تن زباله در روز را دارد و انرژی تولیدی آن برای تأمین برق و گرما در منطقه مورد استفاده قرار می‌گیرد.

در این نیروگاه از فناوری‌های مدرن برای کاهش آلودگی و به حداکثر رساندن بهره‌وری انرژی استفاده می‌شود که به کنترل دقیق دما و فشار همچنین تصفیه مؤثر گازهای خروجی کمک می‌کند تا انتشار آلاینده‌های مضر به محیط زیست را به حداقل برساند.

این نیروگاه در اکتبر ۲۰۲۲ سیستم تولید برق از بازیابی حرارت زائد (WHRPG) را به کارخانه سیمان تایهیو در سایتامای ژاپن انتقال داده است که از حرارت اضافی آزادشده در فرایند تولید سیمان برای تولید برق استفاده می‌کند و منجر به کاهش مصرف انرژی و اثرات زیست‌محیطی کارخانه سیمان خواهد شد.

دی‌اکسید‌کربن را می‌توان به‌منبع غذایی تبدیل کرد

دی‌اکسید‌کربن را می‌توان به‌منبع غذایی تبدیل کرد

دی‌اکسید‌کربن را می‌توان به‌منبع غذایی تبدیل کرد
گروه علمی: اگرچه دی‌اکسید کربن ممکن است منبع اصلی تغییرات آب‌وهوایی سیاره ما باشد اما می‌تواند به یک منبع تقریبا بی‌حدوحصر از پروتئین، کربوهیدرات و چربی نیز تبدیل شود و غذای جمعیت روبه‌رشد کره زمین را فراهم کند.

به گزارش ایسنا، با کاهش منابع ارزشمند و بروز خطرات زیست‌محیطی، کاهش وابستگی به کشاورزی سنتی ضروری می‌شود. اگرچه کشاورزی مدرن برای تغذیه جمعیت جهان بسیار سودمند بوده اما این سیستم در برابر خطرات فاجعه‌بار آسیب‌پذیر است و شیوه‌های ناپایدار کشاورزی به طور غیرقابل انکاری روی کره زمین تأثیر گذاشته‌اند.
 
 «خوآن گارسیا مارتینز»(Juan García Martínez) مدیر پژوهشی سازمان غیرانتفاعی «اتحاد تغذیه زمین در بلایای طبیعی»(ALLFED) گفت: تبدیل مواد خام غیرخوراکی مانند کاه، چوب یا دی‌اکسید کربن به غذا این قابلیت را دارد که نیازهای جمعیت جهان را به مواد مغذی و کالری تامین کند و در عین حال، با کاهش وابستگی صرف به منابع کشاورزی، انعطاف‌پذیری عرضه جهانی غذا را افزایش دهد.اگرچه مأموریت اصلی سازمان ALLFED تضمین امنیت غذایی در صورت بروز اختلالات در مقیاس بزرگ است اما مارتینز تأکید کرد که سیستم‌های غیرکشاورزی تولید مواد غذایی فراتر از سناریوهای بحران نیز سودمند هستند. به عقیده مارتینز، آنها می‌توانند خطراتی را مانند محدودیت‌های تجاری، تخریب محیط زیست، آب‌وهوای ناملایم، تغییرات آب‌وهوایی، عوامل بیماری‌زا و آفات را به حداقل برسانند یا از بین ببرند.
وی افزود: آنها می‌توانند به انعطاف‌پذیرتر شدن سیستم‌های غذایی پایدارتر، کاهش استفاده از زمین، کاهش مصرف آب و صید بی‌رویه کمک کنند و حتی در شرایط سخت‌تر مانند ماموریت‌های فضایی یا تلاش‌های بشردوستانه به تهیه غذا بپردازند.

با توجه به افزایش تعداد مردم روی کره زمین، کالری بیشتری نیز مورد نیاز است که کشاورزی سنتی برای برآورده کردن آن با مشکل روبه‌رو می‌شود. مارتینز ادامه داد: با افزایش جمعیت جهان، نیاز به غذای پایدار و مغذی نیز افزایش می‌یابد و اینجاست که روش‌های تولید غیر کشاورزی و محیط بسته وارد می‌شوند.

اگر فناوری‌های غیر کشاورزی تولید مواد غذایی در مقیاس صنعتی اجرا شوند، می‌توانند به عنوان یک طرح پشتیبان قابل اعتماد در صورت شوک‌های آب‌وهوایی، تهدیدات زیست‌محیطی، اختلالات تجاری و سناریوهای بدتر مانند کاهش ناگهانی نور خورشید به دلیل زمستان آتشفشانی یا زمستان هسته‌ای عمل کنند. به عنوان مثال، چوب و بقایای گیاهی غیرقابل خوردن را می‌توان به قند تبدیل کرد و نفت و ذغال‌سنگ را می‌توان از طریق فرآیندهای صنعتی که به خوبی تثبیت شده‌اند، به صورت چربی و پروتئین ارائه داد.

لزوما نیازی نیست که کارخانه‌ها از ابتدا ساخته شوند. کارخانه‌های کاغذ و پالایشگاه‌های نیشکر و ذرت برای صرفه‌جویی در زمان و هزینه می‌توانند تغییر کاربری دهند تا زیست‌توده گیاهی را به قند، چربی و پروتئین تبدیل کنند.

اگرچه دی‌اکسید کربن ممکن است منبع اصلی تغییرات آب‌وهوایی سیاره باشد اما می‌تواند به یک منبع تقریبا بی‌حدوحصر از پروتئین، کربوهیدرات و چربی نیز تبدیل شود که بدن برای رشد به آنها نیاز دارد. مارتینز خاطرنشان کرد: امروزه شرکت‌های پیشگامی وجود دارند که از دی‌اکسید کربن برای تولید پروتئین یا جایگزین کره با کیفیت بالا استفاده می‌کنند و برخی نیز آن را برای تولید قند به کار می‌برند.

پروتئین ساخته‌شده از تخمیر گاز توسط میکروارگانیسم‌هایی مانند باکتری‌ها، مخمرها، جلبک‌ها و قارچ‌ها در حال افزایش است و چندین شرکت از دی‌اکسید کربن برای تولید جایگزین‌های باکیفیت و پروتئین تک‌سلولی جایگزین سویا، لبنیات، گوشت و تخم‌مرغ استفاده می‌کنند. شرکت‌های دیگر روی تولید پروتئین تک‌سلولی از متان تمرکز کرده‌اند که یک گاز گلخانه‌ای قوی است.

این پودرهای پروتئین میکروبی را می‌توان به نان، ماکارونی، گوشت و لبنیات گیاهی اضافه کرد یا به عنوان مکمل پروتئین مانند پودر آب پنیر مورد استفاده قرار داد اما هزینه یک مانع اصلی است. در هر حال، مارتینز معتقد است که شرایط تغییر خواهد کرد.

وی افزود: سنگاپور در حال حاضر در این بازی جلوتر است. در سنگاپور، پروتئین‌های ساخته‌شده از دی‌اکسید کربن تجاری‌سازی شده‌اند زیرا آنها به افزایش حاکمیت غذایی خود علاقه‌مند هستند و این کار راهی را برای به دست آوردن غذا از زمین بسیار محدود فراهم می‌کند تا کاملا به واردات مواد غذایی وابسته نباشند.

مارتینز ادامه داد: اگرچه بسیاری از این غذاها می‌توانند به میزان قابل توجهی انعطاف‌پذیری و پایداری مواد غذایی را افزایش دهند اما برای اطمینان از سودمند بودن آنها باید تحقیقات بیشتری درباره تأثیرات آنها بر سلامتی، اثرات اقتصادی آنها بر کارگران کشاورزی و برقراری عدالت در فرآیندهای انتقال از غذاهای سنتی به صنعتی انجام شود که به نیروی کار کمتری نیاز دارند.
این پژوهش در «Trends in Food Science & Technology» به چاپ رسید.

ارمغان انرژی پاک و مقرون‌به‌صرفه در اروپا با باتری‌های خاکی

ارمغان انرژی پاک و مقرون‌به‌صرفه در اروپا با باتری‌های خاکی

نصب باتری‌های خاکی باکتریایی می‌تواند انرژی ارزان، پاک و شبانه‌روزی را برای مزارع اروپا به ارمغان آورد.

به گزارش ایمنا، باکتری‌های موجود در خاک می‌توانند به بهبود فناوری‌هایی کمک کنند که بازده مزارع را افزایش می‌دهد. باتری‌هایی که با این باکتری‌ها کار می‌کنند، به‌زودی انرژی ارزان و پایدار را برای مزارع اروپا و حتی سراسر جهان تأمین کنند.

باتری‌هایی با سوخت باکتری

یک استارت‌آپ بریتانیایی از الکترون‌های تولیدشده توسط باکتری‌ها در خاک استفاده می‌کند تا الکتریسیته تمیز را از زمین جمع‌آوری کند. باتری‌های قابل شارژ با خاک، پتانسیل فعالیت شبانه‌روزی را در سراسر جهان دارند و بنیان‌گذاران امیدوارند که این فناوری حرکت به سمت کشاورزی مبتنی بر داده را تسریع و به کشاورزان کمک کند تا بازدهی خود را افزایش دهند و منابع را بدون نیاز به نصب زیرساخت‌های انرژی گران‌قیمت و سخت نگهداری کنند.

ارمغان انرژی پاک و مقرون‌به‌صرفه در اروپا با باتری‌های خاکی

عملکرد باتری‌های باکتریایی

باتری‌های باکتریایی روی سلول‌های سوختی میکروبی خاک (SMFCs) ساخته می‌شوند که انرژی را از واکنش‌های شیمیایی طبیعی جذب می‌کنند که در میکروارگانیسم‌های مبتنی بر خاک رخ می‌دهد. الکترودهای مبتنی بر کربن در خاک قرار می‌گیرند و به مدار خارجی متصل می‌شوند.

این سیستم الکترون‌های تولید شده توسط میکروارگانیسم‌های خاص را در حالی منتقل می‌کند که ترکیبات آلی موجود در خاک را مصرف و آن‌ها را به برق تبدیل می‌کند. پشته‌های این سلول‌ها را می‌توان به باتری متصل کرد تا این انرژی را ذخیره کند.

این فناوری که روی یک سیستم تصفیه آب در برزیل آزمایش شد، اکنون با توسعه روش‌هایی برای افزایش تولید برق متناسب با فرایندهای بیولوژیکی در خاک، ارتقا پیدا کرده است.

بهبود دانش تیم در زمینه فرایندهای مختلف بیوالکتروشیمیایی و به‌دست آوردن درک بهتر از نقش باکتری‌ها و خاک در این معادله پیچیده، محققان را قادر به مهندسی راه‌حل‌هایی کرده است که فرایندهای انتخابی را در زمین کنترل می‌کند و با به حداکثر رساندن امکان استخراج انرژی، امکان تولید مداوم برق را برای سال‌ها حفظ می‌کند؛ این محصول تجاری سال ۲۰۲۶ عرضه خواهد شد.

ارمغان انرژی پاک و مقرون‌به‌صرفه در اروپا با باتری‌های خاکی

باتری‌های باکتریایی و کشاورزی

فناوری به سرعت در حال توسعه باتری‌های باکتریایی است تا به کشاورزان در جمع‌آوری داده‌ها در مورد وضعیت مزارع خود، مراقبت از محصولات و کاهش هزینه‌ها کمک کند. کشاورزان به‌طور فزاینده‌ای به اهمیت داده‌ها برای تصمیم‌گیری آگاهانه نسبت به شیوه‌های کشاورزی با منابع کارآمد اهمیت می‌دهند.

با این حال حسگرها و دستگاه‌های متصل به اینترنت به برقی نیاز دارند که نصب و نگهداری آن همیشه آسان نیست. کابل‌ها می‌توانند مزارع را با مشکل مواجه کنند، باتری‌های شیمیایی یک‌بارمصرف نیاز به نظارت و تعویض دارند و منابع انرژی تجدیدپذیر همچون پنل‌های خورشیدی تنها در شرایط آب‌وهوایی مناسب با ظرفیت کامل کار می‌کنند. با ایجاد روشی پایدار برای تأمین انرژی حسگرها، موانع تولید این داده‌ها برطرف خواهد شد.

باتری‌های خاکی باکتریایی می‌توانند بیش از ۲۵ سال دوام بیاورند و تنها ۲۵ پوند در هر واحد بدون نیاز به تعمیر و نگهداری هزینه دارند.

جلبک دریایی می‌تواند «غذای آخرالزمان» باشد

این گیاه می‌تواند «غذای آخرالزمان» باشد

در صورت وقوع یک نبرد فاجعه‌بار هسته‌ای، زمستان هسته‌ای می‌تواند تولید کالری جهانی را تا ۹۰ درصد کاهش دهد. اما مزارع وسیع این گیاه می‌توانند به نجات جان ۱.۲ میلیارد نفر تا زمان بهبود دما کمک کنند.

 دانشمندان منبع غذایی شگفت‌انگیزی کشف کرده‌اند که می‌تواند جان تعداد زیادی از انسان‌ها را پس از جنگ فاجعه‌بار هسته‌ای نجات دهد: جلبک دریایی. 

به گزارش فرادید، جنگ هسته‌ای اگر اتفاق بیافتد سیاره ما را در یک زمستان عمیق هسته‌ای و چیزی شبیه آنچه در فیلم‌های آخرالزمانی می‌بینیم فرو خواهد برد. در بدترین حالت، تبادل هسته‌ای میان ایالات متحده و روسیه (که با هم نزدیک به ۹۰ درصد سلاح‌های هسته‌ای جهان را در اختیار دارند) می‌تواند تا ۱۶۵ میلیون تن (۱۵۰ میلیون تن متریک) دوده را وارد جو زمین کند و دمای سطح را ۹ درجه سانتیگراد کاهش دهد، در نتیجه تولید کالری جهانی تا ۹۰ درصد کاهش می‌یابد. 

این گیاه می‌تواند «غذای آخرالزمان» باشدبرداشت جلبک دریایی

اما دانشمندان در یک مطالعه جدید، دریافتند طی ۹ تا ۱۴ ماه پس از جنگ هسته‌ای، می‌توان مجموعه‌های وسیعی از گیاه جلبک دریایی یا «کتانجک» پرورش‌یافته روی طناب را در خلیج مکزیک و سراسر سواحل شرقی برداشت کرد و به تغذیه ۱.۲ میلیارد انسان کمک کرد. 

مزارع جلبک دریایی، در بالاترین میزان خود، جایگزین ۱۵ درصد غذای مصرفی انسان می‌شوند، در حالی که ۵۰ درصد از سوخت زیستی کنونی و ۱۰ درصد خوراک حیوانات را نیز تامین می‌کنند. محققان یافته‌هایشان را ۹ ژانویه در مجله Earth's Future منتشر کردند. 

شریل هریسون، استادیار اقیانوس‌شناسی و علوم ساحلی و از نویسندگان این تحقیق، می‌گوید: «بیش از ۲ میلیارد نفر پس از جنگ هسته‌ای بالقوه میان هند و پاکستان و ۵ میلیارد نفر پس از جنگ هسته‌ای میان ایالات متحده و روسیه در خطر گرسنگی خواهند بود. بنابراین، کاوش درباره غذاهای جایگزین ضروریست.» 

آنی‌ترین اثر جنگ هسته‌ای، دست‌کم برای کسانی که در منطقه هدف قرار دارند، سوختن پس از مسمومیت با تشعشعات است. این اثرات وحشتناک از زمانی که ایالات متحده در ۶ اوت ۱۹۴۵ بمب اتمی «پسر کوچولو» را در شهر هیروشیمای ژاپن پرتاب کرد، شناخته‌شده است. 

خود این بمب که قدرت انفجاری آن پنج برابر کمتر از بمب‌های گرماهسته‌ای در زرادخانه‌های موجود است، حدود ۱۴۰۰۰۰ نفر را در عرض پنج ماه کشت و بیش از ۶۰۰۰۰ ساختمان از حدود ۹۰۰۰۰ ساختمان شهر را ویران کرد. 

با این حال، به طور بالقوه کشنده‌ترین نتیجه‌ی حتی یک جنگ هسته‌ای در مقیاس کوچک، تأثیری است که روی کشاورزی خواهد گذاشت. در سناریوی پایان جهانی «زمستان هسته‌ای»، غبار و دود رادیواکتیو بخش قابل‌توجهی از نور خورشید را مسدود می‌کند. این امر موجب کاهش دما می‌شود و بسیاری از محصولات زراعی جهان را از بین می‌برد و احتمالاً قحطی جهانی به بار می‌آید که به موجب آن، ممکن است میلیاردها نفر کشته شوند. 

این گیاه می‌تواند «غذای آخرالزمان» باشدعکس هوایی از مزرعه جلبک دریایی در اندونزی

در مطالعات گذشته، محققان پیامدهای آخرالزمانی یک جنگ هسته‌ای را مدل‌سازی کردند. اکنون، برای بررسی چگونگی زنده نگهداشتن برخی از مردم، دانشمندان رشد محصول را در محیط‌هایی که شاهد کاهش شدید دما نبودند (اقیانوس‌های استوایی) مدل‌سازی کردند. 

«اقیانوس و به طور کلی آب، گرمای ویژه بالاتری نسبت به خشکی دارد، بنابراین گرمای بیشتری را ذخیره می‌کند و گرم شدن و خنک شدن آن سخت‌تر است. به همین دلیل است که رادیاتورها بسیار خوب کار می‌کنند، چون گرما را ذخیره می‌کنند و آن را به مرور زمان تابش می‌کنند. بنابراین، اقیانوس مکان بسیار خوبی برای تولید مواد غذایی جایگزین است، برخلاف گلخانه‌های روی زمین که زمان کمبود سوخت، به گرمایش زیادی نیاز دارند. 

مدل‌سازی دانشمندان نشان داد مزارع کتانجک نه تنها دوام می‌آورند، بلکه با کاهش دمای سطح، رشد کرده و گسترش می‌یابند. دلیلش این است که هوای سردتر، آب سطحی را مجبور به فرورفتن بیشتر می‌کند و گردش آب غنی از مواد مغذی را از اعماق بالا می‌برد تا جایگزین آن شود. 

به گفته محققان، از آنجا که ید موجود در جلبک دریایی در مقادیر زیاد می‌تواند برای انسان سمی باشد، استفاده از کتانجک کشت‌شده در مزارع در درجه اول غیرمستقیم است. اما با استفاده از آن برای تغذیه حیوانات و تولید سوخت‌های زیستی، زمین‌های زراعی باقیمانده برای محصولات دیگر آزاد می‌شود. این راه‌حل می‌تواند به انسان کمک کند زمستان هسته‌ای را پشت سر بگذارد تا اینکه چند دهه بعد آب و هوا بهبود پیدا کند. 

کتانجک مخصوص زمستان هسته‌ای نیست بلکه می‌تواند به دنبال فجایع دیگر در سیستم‌های غذایی جهانی، مانند برخوردهای عظیم سیارک‌ها یا فوران‌های آتشفشانی غول‌پیکر نیز راه نجات باشد. برای نمونه، فوران کوه تامبورا در اندونزی در سال ۱۸۱۶ منجر به خرابی محصولات و کمبود مواد غذایی در سراسر نیمکره شمالی شد، اتفاقی که به «سال بدون تابستان» معروف شد. 

در طول تاریخ، فوران‌های بزرگ سبب قحطی در مناطق و جهان شدند. در هر صورت، ما به برنامه‌ای نیاز داریم تا خودمان را در این سناریوهای کاهش ناگهانی نور خورشید، تغذیه کنیم».

مهندسی ژنتیک برای دستیابی به "گاو کمتر، شیر بیشتر!"

گاو کمتر، شیر بیشتر!
دانشمندان گاوها را طوری مهندسی کرده‌اند که نسبت به شرایط آب و هوایی هوشمند باشند و بدین وسیله ۱۰ تا ۲۰ برابر شیر بیشتری تولید کنند. هدف این است که حیوانات مقاوم در برابر آب و هوا معرفی شوند.

عصر ایران-  نگرانی در مورد اثرات گاوها بر محیط زیست و تغییرات آب و هوایی به دلایل مختلف مدتهاست که یک موضوع کلیدی در دامپروری بوده است.

اول این که گاز متان توسط گاو در طول فرآیند هضم این حیوان تولید می‌شود. این گاز گلخانه‌ای نقش مهمی در گرم شدن کره زمین دارد، زیرا پتانسیل گرمایش بسیار بالاتری نسبت به کربن دی اکسید(CO۲) دارد و راه اصلی انتشار آن همین انتشار آن از جانب حیوانات است.

دوم این که جنگل‌زدایی اغلب در نتیجه‌ی دامداری است. پاکسازی جنگل‌ها برای چرای گاوها، کربن ذخیره شده را از درختان آزاد می‌کند و فتوسنتز را که فرآیند طبیعی جذب کربن دی اکسید در زمین است، کاهش می‌دهد.

سوم این که نحوه مدیریت فضولات گاو اثر کربن بالایی بر جای می‌گذارد. متان و سایر گازهای خطرناک ممکن است در نتیجه حمل و دفع نامناسب فضولات این حیوانات در جو منتشر شود.

در نهایت، تولید محصولات خوراک دام اغلب به منابع آب و انرژی قابل توجهی نیاز دارد و می‌تواند منجر به جنگل‌زدایی و تخریب زیستگاه شود.

یکی از راه‌های کاهش همه این مسائل، کاهش تعداد گاوها است و این را می‌توان با افزایش تولید شیر آنها محقق کرد تا گاوهای کمتری همان مقدار خروجی فعلی و حتی بیشتر را داشته باشند.

اکنون گروهی از دانشمندان علوم حیوانی از دانشگاه ایلی‌نوی اوربانا شمپین(Urbana-Champaign) گاوهایی را دستکاری ژنتیکی کرده‌اند که می‌توانند تا ۲۰ برابر شیر بیشتری تولید کنند و آستانه تحمل بالاتری در مقابل بیماری‌ها و آفات دارند.

پژوهشگران قصد دارند در ماه مارس امسال ۱۰۰ نمونه از این جنین‌های جدید را در دو مکان در تانزانیا در گاوهای بومی لقاح کنند و امیدوارند که حیوانات به دست آمده تمام ویژگی‌های مثبتی را که مهندسی شده‌اند، از خود نشان دهند.

مت ویلر، رهبر این پروژه و استاد گروه علوم دامی و علوم محیطی در دانشکده کشاورزی این دانشگاه گفت: ایده این است که مقاومت در برابر بیماری و آفات را با تولید شیر مرتبط نگه داریم تا با تولید مثل، این صفات از هم جدا نشوند.

وی افزود: این در کشورهای در حال توسعه یک چالش خواهد بود. تا زمانی که به نسل مصنوعی خالص نرسید، همیشه این وسوسه وجود خواهد داشت که در این مسیر به تولید مثل گاوها متوسل شوید و اثر گلخانه‌ای را بیشتر کنید.

پرورش حیوانات مقاوم در برابر تغییر اقلیم

اگرچه این ابتکار تازه شروع شده است، اما اولین گام مهم در معرفی پرورش حیوانات مقاوم در برابر تغییرات اقلیمی است. از همین فناوری می‌توان برای محافظت از گاوها در برابر تغییرات آب و هوایی هم در داخل و هم در خارج از کشور استفاده کرد. صفات گرمسیری را می‌توان در گاوهای پرمحصول ایالات متحده برانگیخت تا مقاومت آنها در برابر بیماری، گرما و خشکسالی افزایش یابد.

ویلر می‌گوید: این گاوها در مکزیک، تگزاس، نیومکزیکو و کالیفرنیا بسیار خوب عمل می‌کنند. شاید زمان آن رسیده باشد که به این موضوع فکر کنیم. پیش‌بینی من این است مردم به مرور متوجه می‌شوند که داشتن ژنتیک استوایی چیز خوبی خواهد بود.

منبع: ایسنا