واحد مشترک کمکی پژوهش و مهندسی «هوش یار-تواندار»     (HT-CSURE)

واحد مشترک کمکی پژوهش و مهندسی «هوش یار-تواندار» (HT-CSURE)

Hooshyar-Tavandar Common Subsidiary Unit for Research & Engineering
واحد مشترک کمکی پژوهش و مهندسی «هوش یار-تواندار»     (HT-CSURE)

واحد مشترک کمکی پژوهش و مهندسی «هوش یار-تواندار» (HT-CSURE)

Hooshyar-Tavandar Common Subsidiary Unit for Research & Engineering

تولید از راه دور حیات در مریخ با ایمیل ژنوم

تولید از راه دور حیات در مریخ با ایمیل ژنوم


محققان ماشین جدیدی ساخته اند که می تواند اشکال مختلفی از حیات ترکیبی (سنتزی) را با توجه به سفارشی که می گیرد تولید کند. این فناوری می تواند موضوع کُلُنی سازی در مریخ را هم تحت شعاع قرار دهد.


به گزارش خبرگزاری مهر، ساینس الرت در گزارشی خواندنی نوشت: به سال ۲۰۱۶ باز می گردیم یعنی زمانی که زیست شناسی به نام کریگ ونتر دست به کار بزرگی زد. او توانست گونه های جدیدی از باکتری را در محیط آزمایشگاهی تولید کند. آنچه که این محقق تولید کرد ساده ترین شکل حیات ژنتیکی شناخته شده از نگاه علم محسوب می شد که کاملا از طریق سنتر شیمیایی ژنوم دستکاری شده ارایه شده بود.

اکنون او ماشین جدیدی ارایه کرده که می تواند این اشکال سنتزی از حیات را بر اساس سفارشی که دریافت می کند و تنها با استفاده از یک طرح ژنومی تولید کند. فقط کافی است جوهر دستگاه بلوکهای حیات را شکل دهد.

این اختراع می تواند بشر را به ایجاد کلنی متشکل از حیات سنتزی در مریخ نزدیک کند آن هم بدون اینکه انسان تلاشی برای رسیدن به این سیاره از خود نشان دهد. به همین دلیل این نوآوری مورد توجه الون ماسک مالک شرکت اسپیس ایکس و کسی که تلاش می کند انسان را به مریخ برساند قرار گرفته است.

این تکنیک که تحت عنوان «جابجایی از راه دور زیست شناختی» مطرح شده به دانشمندان این امکان را می دهد تا ژنوم مورد نظرشان را از زمین به دستگاه چاپگری در مریخ ایمیل کنند و این یعنی ایجاد کلنی در مریخ آن هم از راه دور و بدون نیاز به حضور انسان.

کریگ ونتر پیشتر گفته بود: فکر می کنم جابجایی از راه دور زیست شناختی همان فناوری مورد نیاز ایجاد کلنی در مریخ است.

ماشینی که این محقق ساخته نخستین نمونه در جهان محسوب می شود که می تواند توالی های ژنتیکی را از طریق اینترنت یا امواج رادیویی دریافت کند. این بدان معناست که چنین دستگاهی می تواند چهار ساختار پایه ای شیمیایی DNA را از طریق کنترل از راه دور چاپ کرده تا در نهایت ساختارهای زیست شناختی مختلفی ایجاد شود.

New theory of gravity might explain dark matter

New theory of gravity might explain dark matter

November 8, 2016

New theory of gravity might explain dark matter

Credit: Wikipedia

A new theory of gravity might explain the curious motions of stars in galaxies. Emergent gravity, as the new theory is called, predicts the exact same deviation of motions that is usually explained by invoking dark matter. Prof. Erik Verlinde, renowned expert in string theory at the University of Amsterdam and the Delta Institute for Theoretical Physics, published a new research paper today in which he expands his groundbreaking views on the nature of gravity.

In 2010, Erik Verlinde surprised the world with a completely new theory of gravity. According to Verlinde, gravity is not a fundamental force of nature, but an emergent phenomenon. In the same way that temperature arises from the movement of microscopic particles, gravity emerges from the changes of fundamental bits of information, stored in the very structure of spacetime.


Newton's law from information

In his 2010 article (On the origin of gravity and the laws of Newton), Verlinde showed how Newton's famous second law, which describes how apples fall from trees and satellites stay in orbit, can be derived from these underlying microscopic building blocks. Extending his previous work and work done by others, Verlinde now shows how to understand the curious behaviour of stars in galaxies without adding the puzzling dark matter.

The outer regions of galaxies, like our own Milky Way, rotate much faster around the centre than can be accounted for by the quantity of ordinary matter like stars, planets and interstellar gasses. Something else has to produce the required amount of gravitational force, so physicists proposed the existence of dark matter. Dark matter seems to dominate our universe, comprising more than 80 percent of all matter. Hitherto, the alleged dark matter particles have never been observed, despite many efforts to detect them.


No need for dark matter

According to Erik Verlinde, there is no need to add a mysterious dark matter particle to the theory. In a new paper, which appeared today on the ArXiv preprint server, Verlinde shows how his theory of gravity accurately predicts the velocities by which the stars rotate around the center of the Milky Way, as well as the motion of stars inside other galaxies.

"We have evidence that this new view of gravity actually agrees with the observations, " says Verlinde. "At large scales, it seems, gravity just doesn't behave the way Einstein's theory predicts."

At first glance, Verlinde's theory presents features similar to modified theories of gravity like MOND (modified Newtonian Dynamics, Mordehai Milgrom (1983)). However, where MOND tunes the theory to match the observations, Verlinde's theory starts from first principles. "A totally different starting point," according to Verlinde.

Adapting the holographic principle

One of the ingredients in Verlinde's theory is an adaptation of the holographic principle, introduced by his tutor Gerard 't Hooft (Nobel Prize 1999, Utrecht University) and Leonard Susskind (Stanford University). According to the holographic principle, all the information in the entire universe can be described on a giant imaginary sphere around it. Verlinde now shows that this idea is not quite correct—part of the information in our universe is contained in space itself.

This extra information is required to describe that other dark component of the universe: Dark energy, which is believed to be responsible for the accelerated expansion of the universe. Investigating the effects of this additional information on ordinary matter, Verlinde comes to a stunning conclusion. Whereas ordinary gravity can be encoded using the information on the imaginary sphere around the universe, as he showed in his 2010 work, the result of the additional information in the bulk of space is a force that nicely matches that attributed to dark matter.


On the brink of a scientific revolution

Gravity is in dire need of new approaches like the one by Verlinde, since it doesn't combine well with quantum physics. Both theories, crown jewels of 20th century physics, cannot be true at the same time. The problems arise in extreme conditions: near black holes, or during the Big Bang. Verlinde says, "Many theoretical physicists like me are working on a revision of the theory, and some major advancements have been made. We might be standing on the brink of a new scientific revolution that will radically change our views on the very nature of space, time and gravity."


* Explore further: 3 knowns and 3 unknowns about dark matter

More information: Emergent Gravity and the Dark Universe, E. P. Verlinde, 7 Nov 2016. arxiv.org/abs/1611.02269

Provided by: Delta Institute for Theoretical Physics




 

'Cryosleep' May Open the Door to Deep Space

An artist's impression shows a crew of astronauts in a state of deep sleep. SpaceWorks

In science fiction, when people need to travel immense distances through outer space and don’t have a wormhole nearby, they bed down for a very long nap. For this, the heroes of films like "Aliens," "Avatar," "Interstellar," and "Passengers," have put themselves into suspended animation.

It would be convenient if real astronauts could hop in a sleep pod and wake up years later without aging a day. The bad news is we’re nowhere near this reality.

But scientists and engineers are collaborating with NASA and other space agencies to develop suspended animation projects for missions to Mars and beyond. Instead of being frozen in time, though, astronauts could be knocked out for weeks or months in a state called torpor that resembles hibernation.

If these projects are successful, ships could be more compact and more sparsely equipped, making them less expensive to propel through space. Astronauts could also spare their physical and mental health. And torpor could help us here on Earth, too.

The Case For Torpor

On a voyage to deep space, humans will be more demanding cargo than a rover or satellite. For one, we must eat. We also need room to move around and tend to chafe at sharing cramped quarters for long periods. And our bodies will be bombarded with cosmic rays and face numerous health issues caused by low gravity, including loss of bone density and muscle mass.

Putting astronauts into a hibernation-like state could help with some of these problems.

“The core characteristic of hibernation is that you suddenly stop consuming energy,” says Matteo Cerri, a physiologist at the University of Bologna in Italy. “If you’re not consuming any fuel you’re going to cool down.”

Related: Meet NASA's 2017 Class of Astronauts

During hibernation, an animal’s metabolism grinds to a near standstill. The heart beats more slowly and body temperature drops. The hormones and composition of the blood are altered. Breathing, cell replication, and brain activity slow. “It’s like a movie that progressively slows down," Cerri says. "Every frame gets slower and slower."

But humans can’t hibernate. “We’re just trying to make them appear to hibernate, or creating the benefits…of hibernation,” says John Bradford, president and COO of SpaceWorks Enterprises, an Atlanta-based aerospace engineering firm working with the NASA Innovative Advance Concepts (NIAC) Program.

If the crew could spend most of the flight in torpor, they would need less food and could occupy a smaller living space. Shipping anything into space is incredibly expensive because of added fuel costs for each extra pound, so a smaller spaceship would be a huge advantage.

Torpor could help fit more people on smaller ships to help rapidly populate space colonies. SpaceWorks

It might also be more pleasant for the astronauts.

“If you’re in a small tin can with the same other three people for nine months and you can’t really move about the cabin…it may actually be that sleeping for 14 days is the preferred way to go,” says Jason Derleth, program executive of NIAC.

Torpor could also have health benefits. While hibernating, animals don’t suffer muscle atrophy or bone degeneration from lack of use, although it’s not clear why. And there’s evidence that animals are less vulnerable to radiation during hibernation. So torpor might give astronauts added protection during spaceflight. On the other hand, a lowered metabolism means the body may not repair itself as quickly, so radiation damage might be more profound, Derleth says.

Having the crew stay in one place would make it easier to shield that portion of the ship from radiation since it would be incredibly expensive and impractical to shield a whole spacecraft.

How Will It Work?

The European Space Agency is working with Cerri and his colleagues to study suspended animation. They have already used drugs to shut off a brain area that controls metabolism in non-hibernating rats, sending the rodents into torpor.

Meanwhile, SpaceWorks has a team of engineers, former astronauts, physicians, and hibernation researchers that are pondering how to send astronauts into torpor safely and how a spacecraft could be designed to accommodate them.

SpaceWorks’ ideas build on a procedure used in emergency rooms called therapeutic hypothermia, in which the body is cooled to prevent brain damage after crises like cardiac arrest. But this has been done for days, not weeks or months. And it’s unclear whether it causes side effects because the people who receive this treatment are already ill.

There Could Be a Village on the Moon by 2030

To enter torpor, astronauts would only need to drop their internal body temperature about 9 degrees Fahrenheit. It’s possible this temperature drop could be done by cooling the surrounding air, Bradford says. Astronauts would be given a sedative to relax and prevent shivering as they slip into torpor.

A spacecraft could also have special pods to chill each crewmember. Or it could be equipped to cool the entire habitat or just a chilly area where crew in torpor are separated from other astronauts.

While in torpor, astronauts will need life support systems to monitor their vitals and take care of them. “We’re not like bears," Bradford says. “Unfortunately we don’t get to stock up and put on 300 pounds and then wake up nice and fit.” Food could perhaps be delivered intravenously.

Astronauts can enter torpor in shifts so someone is always alert. Initially, SpaceWorks aims to place people in torpor for two weeks. Later, they may work up to months, which would help with future colonization efforts. “If you want to send hundreds of people to Mars, you don’t want to have everybody waking up every two weeks,” Bradford says.

Photos: Evolution of the NASA Spacesuit, From Mercury to Starliner

Awakening from torpor will not be instantaneous. Astronauts must be roused slowly so different body parts can adjust at the right rates. As the body warms, every organ will be clamoring for energy, but the brain must first provide for itself, the heart, and other vital areas. Otherwise, those areas could be deprived of blood flow, possibly leading to a heart attack or stroke.

To combat radiation, the crew could be surrounded by their food bags while they sleep to help block them from exposure. But that protection would diminish as their contents are imbibed. “Does that mean that you put the person’s waste back in those bags?” Derleth asks.

Researchers will also have to investigate potential side effects of torpor, like an erratic heartbeat, infections, or blood clots. And we don’t know yet how torpor will affect cognition and memory, or what it will feel like for a healthy person.

“Below a certain degree of temperature…there is probably no consciousness anymore,” Cerri says. “But in the beginning, it could be quite odd, maybe even unpleasant.”

Bound For Torpor

One thing torpor can’t do is stop astronauts from aging. Hibernating animals do tend to live longer compared with other species similar in size, so it’s possible that torpor would slow human aging a little, but not enough to send people on 100-year jaunts through space.

For that, we would need to freeze astronauts, replacing their blood with an antifreeze to prevent their cells from bursting. Since we don’t know how to resurrect people from this chilly oblivion, cryonics isn’t yet a practical option for deep space travel. “Even if you were defrosting the body with no damage to the tissues, the body will still be dead when you warm it up,” Cerri says.

Related: Warp Speed Won't Get Us to the Stars, But This Just Might

Torpor is a much better bet. And it wouldn’t only be useful for space exploration. Soldiers wounded on the battlefield could be put into torpor until help can arrive. Or it could keep donor organs viable longer.

Cerri is now investigating whether torpor or hypothermia can protect healthy cells from radiation damage. If so, people could be put into torpor for cancer treatment. Doctors could then use a more intense dose of radiation to blast tumors because the surrounding tissue would be less vulnerable.

Bradford thinks technologies to use torpor could be ready by the early 2030s, when people are setting off on the first missions to Mars. NASA is not currently planning to use torpor for any future journeys, but if torpor proves its mettle, it could enable more ambitious voyages, Derleth says. “It does open up the possibility for 100 years from now traveling out to asteroids or even deeper in space.”

آژانس فضایی اروپا؛ مریخ نمی‌تواند جایگزین زمین باشد

زندگی در مریخ شاید جالب به نظر برسد، اما در واقع وحشتناک است.
 
به گزارش ایسنا و به نقل از پایگاه یونیورسیتی هرالد، آژانس فضایی اروپا می‌گوید ممکن است زندگی روی سیاره سرخ برای افراد مهیج و جالب باشد، اما در واقعیت این گونه نخواهد بود و زندگی در کره مریخ به آن راحتی که مردم فکر می‌کنند، نیست.
 
"یوهان دیتریش ورنر" (Johann-Dietrich Worner)، مدیر کل آژانس فضایی اروپا می‌گوید: شیوه زندگی بر روی کره مریخ آن طور که مردم تصور می‌کنند، نخواهد بود.
 
وی اعلام کرد: به هیچ وجه مشتاق مهاجرت به مریخ نیست!
 
وی افزود: اگر شخصی به مریخ سفر کند و قصد اقامت داشته باشد، نمی‌تواند برای یک پیاده‌روی کوتاه قدم به بیرون بگذارد و باید همواره در پناهگاه خود اوقات بگذراند. به همین دلیل مریخ جای مناسبی برای زندگی نیست.
 
دکتر "ورنر" به تفاوت میان دیدن یک سیاره با اقامت در آن تاکید کرد و گفت: واژه اقامت کلمه درستی نیست، بلکه باید از واژه سیاحت استفاده کرد. زندگی در مریخ نمی‌تواند جایگزین زندگی در زمین باشد.
 
مردم تصور می‌کنند که مشکلی نیست که زمین را نابود کنیم، چرا که می‌توان به جای بهتری نقل مکان کرد. اما باید گفت که یافتن سیاره‌ای بهتر از زمین بسیار سخت است.
 
آژانس فضایی اروپا همچنین اعلام کرد: زندگی روی کره ماه نیز تفاوتی با زندگی در سیاره مریخ نخواهد داشت.
 
با این که مریخ روشنایی بهتری دارد، اما دیگر شرایطش بهتر از زمین نیست. مریخ یک جو نازک دارد، بنابراین تنفس در فضای آزاد غیر ممکن است، علاوه بر آن سیاره مریخ مملو از صخره و سنگ، هوای خشک و غبارآلود است.
 
با تمام این تفاسیر، ایده جستجو و کشف و مطالعه سیارات منظومه شمسی همیشه وجود داشته است، اما بررسی قابلیت زندگی کردن و اقامت در دیگر سیارات موضوعی است که اخیرا مطرح شده است.
 
این خواسته، حامیانی نظیر "ایلان ماسک" بنیان‌گذار شرکت "اسپیس‌ایکس" نیز دارد.

پرتاب اولین کاوشگر خورشید در سال آینده

 سازمان ملی هوانوردی و فضایی آمریکا (ناسا) قرار است سال آینده اولین کاوشگر خورشید را با هدف مطالعه بادهای خورشیدی، به مدار ستاره منظومه شمسی پرتاب کند.
 
به گزارش ایرنا از ساینس دیلی، بادهای خورشیدی جریان‌هایی از ذرات ریزاتمی هستند که از جاذبه خورشید فرار کرده و از میدان مغناطیسی آن برای حرکت خود بهره می‌گیرند.

این جریان‌ها با سرعت مافوق صوت قادرند میلیارها کیلومتر را بپیمایند و سیاره ما و سایر سیارات منظومه شمسی را تحت تاثیر قرار دهند.

برای مثال در سال 2015 میلادی اطلاعات به دست آمده از کاوشگر MAVEN ناسا نشان داد این بادهای خورشیدی اتمسفر مریخ را اتم به اتم متلاشی می‌کنند.

خاستگاه این بادهای خورشیدی مساله‌ای است که از چند دهه قبل ذهن محققان را به خود مشغول کرده است. اما بررسی این پدیده از فاصله نزدیک به معنای ارسال یک کاوشگر فضایی به اتمسفر خورشید و دمایی نزدیک به 1377 درجه سانتیگراد است.

اکنون با پیشرفت‌هایی که در مهندسی دما حاصل شده است و امکان محافظت از کاوشگر را در برابر چنین گرمایی فراهم می‌کند، ناسا قادر است کاوشگری را به اتمسفر خورشید پرتاب کند.

بدنه این کاوشگر که Parker Solar Probe نام دارد از جنس کامپوزیت کربن با ضخامت 114 میلیمتر است و می‌تواند دمای درون کاوشگر را حدود دمای اتاق نگه دارد.

این کاوشگر تقریبا به اندازه یک اتومبیل است و قرار است با استفاده از جاذبه سیاره زهره در یک بازه زمانی 7 ساله خود را به خورشید برساند. سپس با سرعت 700 هزار کیلومتر در ساعت از درون اتمسفر خورشید و از فاصله 6.27 میلیون کیلومتری سطح آن عبور کند. این فاصله هفت برابر نزدیک تر از فاصله‌ای است که تاکنون یک فضاپیما از آن عبور کرده است.

قرار است این کاوشگر در ماه جولای سال 2018 میلادی با استفاده از راکت Delta IV Heavy به فضا پرتاب شود.