واحد مشترک کمکی پژوهش و مهندسی «هوش یار-تواندار» (HT-CSURE)

Hooshyar-Tavandar Common Subsidiary Unit for Research & Engineering

واحد مشترک کمکی پژوهش و مهندسی «هوش یار-تواندار» (HT-CSURE)

Hooshyar-Tavandar Common Subsidiary Unit for Research & Engineering

محققان بطور تصادفی دی اکسید کربن را به اتانول تبدیل کردند

محققان بطور تصادفی دی اکسید کربن را به اتانول تبدیل کردند

در حالیکه کشورهای تمام دنیا کار طولانی و سخت تنظیم آینده سوختهای فسیلی را ادامه می دهند، دانشمندان کشف کرده اند که چگونه دی اکسید کربن موجود در اتمسفر زمین را حذف کنند،آزمایشگاه اوک ریج oak ridge به طور تصادفی و غیر منتظرانه واکنش شیمیایی را کشف کرده اند که دی اکسید کربن را به اتانول تبدیل می کند.این کشف توسط محققانی هنگامی به دست آمده که محققان در تلاش بودند تا با استفاده از سری واکنش های شیمیایی دی اکسید کربن را به سوخت تبدیل نمایند.اولین قدم از این واکنشها کاملا کافی بود تا ان واکنش روی دهد. اتانول منتجه سوختی پاکتر هست که به خودروها و ژنراتورها توان می دهد.

تکنولوژی تبدیل دی اکسید کربن به اتانول متشکل ازیک ترکیب جدید از کربن ومس می باشد که روی یک سطح سیلیکونی قرارداده شده است. آدام راندینان Adam Rondinone  محقق میگوید:"با استفاده از مواد عادی، اما با چیدن انها با نانوفناوری، فهمیدیم که چگونه واکنش های جانبی را محدود کنیم و در نهایت به ان چیزی که می خواهیم برسیم." واکنش منتجه بسیار مختصر می باشد و اتانول تولید شده نسبتا عاری از آلودگیست.

فرآیند تازه کشف شده از روش قبلی راحتتر می باشد بویژه بدلیل آغاز و نتیجه آسانتر و با هزینه انرژی کمترآن را بدست اورد. "راندینان" می گوید:"فرآیندی مانند این به شما اجازه میدهد تا انرژی اضافی موجود را مصرف کرده و آن را به اتانول تبدیل و ذخیره کرد.این روش می تواند کمک کند تا شبکه های برق متناوب از انرژی های با منابع تجدیدپذیر را بالانس کرد." تیم مستقر در اوک ریج سعی دارد تا واکنش را بازبینی کند تا کارآیی ان را بهبود بخشد. هدف نهایی  برای این تکنولوژی، کاربرد آن برای جذب کربن در مقیاس وسیع خواهد بود؛ جام مقدس در مبارزه با تغییرات اقلیمی.

آخرین اخبار

پمپ های آب خورشیدی**

سیستم های پمپاژ آب خورشیدی شامل پمپ, پنل خورشیدی برای تولید جریان برق مستقیم و یک کنترل کننده و دیگر ملزومات از قبیل سنسور تعیین سطح آب و ... است. سیستم های پمپاژ آب خورشیدی در دو گروه پمپ های سطحی (Surface Pumps) و پمپ های غوطه ور در آب (Submersible Pumps ) عرضه می گردند.
آب یکی از مهمترین منابعی است که زندگی انسان به آن وابسته است. آب حاصل از دریاچه ها، برکه ها، رودخانه ها و چاه ها جهت مصارفی همچون کشاورزی، دامداری، صنعت و مصارف عمومی همواره یکی از معظلات موجود بر سر راه توسعه جوامع انسانی به خصوص جوامع روستایی بوده است.

در بسیاری از مناطق، آب در سفره های زیرزمینی وجود داشته و خارج سازی آن توسط دست یا تلمبه های دستی و یا توسط موتورهای دیزلی که از سوخت های فسیلی استفاده می کنند صورت می گیرد.

در مناطق کویری یا کوهستانی که مشکلات برق رسانی وجود دارد و نیز آب در عمق نسبتاً زیادی از سطح زمین قرار دارد خارج سازی آب به روش های فوق امکان پذیر نیست. در این مناطق استفاده از پمپ های خورشیدی می تواند مزایای فراوانی داشته باشد.

به دلیل دور دست بودن این مناطق از شبکه برق امکان انتقال انرژی به این مناطق با هزینه های بسیار بالایی روبرو می باشد در بخش کشاورزی هم از مهمترین عوامل وجود منابع حتی آب می باشد.
استفاده از انرژی های نو مانند خورشید و باد بهترین راه حل برای تامین برق در بخش آب شرب و کشاورزی می باشد.

ضرورت استفاده از پمپ های خورشیدی

پمپ های خورشیدی دارای مزایایی نسبت به پمپ های دیگر می باشد که در زیر به چند مورد از آنها اشاره می کنیم:

  • استفاده از پمپ های خورشیدی در مناطقی که از شبکه انتقال برق فاصله زیادی دارند.
  • عدم اطمینان از آینده قیمت برق (افزایش تعرفه برق با برداشتن یارانه ها)
  • عدم استفاده از منابع سوخت های فسیلی
  • افزایش هزینه ی سوخت های فسیلی مانند گازوئیل و بنزین
  • عدم نیاز به متخصص و کارشناسان خبره برای راه اندازی و استفاده از پمپ های خورشیدی
  • با توجه به محدود بودن اجزای سیستم، پمپ های خورشیدی به مراقبت و تعمیرات کمتری در قیاس با پمپ های دیزلی نیاز دارند.
  • با توجه به پاک بودن منابع انرژی تجدید پذیر هیچ آسیبی به محیط زیست وارد نمی شود.
  • عدم نیاز به اجرای شبکه kv 20 جهت تامین برق پمپ
  • آسانی کار با پمپ های خورشیدی،سرعت بالای یادگیری کار با آنها و حمل و نقل آسان آنها از مزایای بزرگ این چنین پمپ ها است که باعث می شود کار با آنها در مناطق دور افتاده مورد توجه قرار گیرد.
  • و مهمترین دلیلی که می توان استفاده از پنل های خورشیدی و اصولا پمپ های خورشیدی را توجیه کرد این است که زمان استفاده از چاه های آب شرب به عبارتی بهره برداری از چاه ها از فصل بهار افزایش یافته و تا ابتدای پاییز به طول می انجامد که این دوره زمانی بیشترین ساعات تابش آفتاب در مقایسه با فصول دیگر وجود دارد ودر این فصول نیزمی توان از انرژی خورشیدی حداکثر استفاده را برد.

مکانیزم استفاده از پمپ های خورشیدی عموما به گونه ای است که در طول روز و تا زمانی که خورشید در دسترس باشد از انرژی آن برای تامین انرژی مورد نیاز برای استفاده از پمپ بهره می بریم و آب را در مخازن برای استفاده در مواقع دیگر ذخیره می کنیم. به طور میانگین ۸ ساعت زمان پمپاژ آب در طول روز است که با توجه به فصول قابل تغییر است.

به طور کلی پمپ های خورشیدی پمپ هایی هستند که در آنها انرژی خورشیدی به وسیله پنل های خورشیدی به انرژی الکتریسیته تبدیل می شود و این انرژی در راه اندازی پمپ آبی مورد استفاده قرار می گیرد.


به طور کلی پمپ های خورشیدی از 3 جزء اصلی تشکیل شده است. شامل:

  • پنل های خورشیدی
  • کنترل کننده
  • بدنه اصلی


پمپ های خورشیدی

پمپ های آب عموما به دو دسته AC و DC تقسیم می شوند. از آنجایی که پنل های خورشیدی جریان DC تولید می کند به نظر می رسد پمپ های DC باعث کاهش تجهیزات مورد نیاز و صرفه جویی بیشتر در انرژی می شود.

از نظر اقتصادی موتورهای AC بسیار ارزانتر از موتورهای DC هستند، اما تبدیل کننده DC به AC نسبتا گران قیمت است.

سیستم های پمپاژ آب خورشیدی شامل پمپ,پنل خورشیدی برای تولید جریان برق مستقیم و یک کنترل کننده و دیگر ملزومات از قبیل سنسور تعیین سطح آب و .. است. سیستم های پمپاژ آب خورشیدی در دو گروه پمپ های سطحی (Surface Pumps) و پمپ های غوطه ور در آب (Submersible Pumps ) عرضه می گردند.


پمپ های خورشیدی


نحوه انتخاب و خرید یک سیستم پمپ خورشیدی

عوامل موثر در طراحی یک سیستم پمپاژ خورشیدی عبارتند از:

  • محل جغرافیایی نصب سیستم
  • میزان ارتفاع چاه یا منبع آب
  • میزان ارتفاع از سطح چاه تا سطح منبع ذخیره در صورت وجود
  • میزان دبی آب مورد نیاز در روز بر حسب متر مکعب یا لیتر بر ثانیه
  • مدت زمان آبیاری سیستم
  • طول خط انتقال آب از چاه تا منبع ذخیره در صورت وجود


پمپ های خورشیدی

هدف؛ خداحافظی با خودروهای بنزینی و گازوئیلی تا سال ۲۰۳۵

جدیدترین برآوردها حاکی از آن است که خودروهای بنزینی و گازوئیلی تا سال ٢٠٣٥ میلادی به منظور مبارزه با گرمایش جهانی از رده خارج می‌شوند.
 
به گزارش ایسنا، خبرگزاری رویترز براساس یک پژوهش اعلام کرد برای مبارزه با گرمایش جهانی و رسیدن به اهداف اقلیمی که سال گذشته میلادی (٢٠١٥) در کنفرانس محیط زیستی پاریس مطرح شد، خودروهای بنزین‌سوز و گازوئیل‌سوز از سال ٢٠٣٥ میلادی فروخته نخواهد شد.
 
این مطالعه را که سه گروه تحقیقاتی انجام داده‌اند، حاکی است با توجه به اینکه امروزه خودروها حدود ١٤ درصد از گازهای گلخانه‌ای را در جهان تولید می‌کنند، وسائل نقلیه برقی باید جایگزین خودروهای بنزین سوز شود.
 
در دسامبر سال گذشته میلادی رهبران ارشد و نمایندگان کشورهای مختلف جهان در نشستی که در پاریس برگزار شد، برای مبارزه با تغییرات آب و هوایی توافق کردند که افزایش گرمایش زمین را کمتر از دو درجه سلسیوس (٣,٦ درجه فارنهایت) نگه دارند.
 
چگونگی کاهش انتشار گازهای گلخانه‌ای و پایین آوردن استفاده از سوخت‌های فسیلی در کانون این مذاکرات قرار داشت.
 
تحلیلگران معتقدند که درجه حرارت هوا به طور اجتناب ناپذیری بیش از ۱.۵ درجه سلسیوس افزایش خواهد یافت و برای مبارزه با گرمایش جهانی ناچار به استفاده از فن آوری‌های نو از جمله خودروهای برقی هستیم.
 
با توجه به اینکه دمای هوا هم اکنون حدود یک درجه سلسیوس بالاتر از دوره پیش از صنعتی شدن است، سال ٢٠١٦ گرمترین سال تا کنون اعلام شده است.
 
پژوهش اخیر توصیه می‌کند به منظور بهره‌مندی از «خودروی سبز» باید از برق پاک استفاده کنیم.
 
با توجه به اینکه وسائل نقلیه برقی بسیار گران‌تر از خودروهای عادی هستند، پیش بینی می‌شود که تا سال ٢٠٣٠ تنها پنج درصد از وسائل نقلیه در اتحادیه اروپا، چین و آمریکا با برق کار کنند.
 
امروزه انرژی‌های نو همچون انرژی خورشیدی، بادی، آبی، سوخت زیستی، بیوگاز و انرژی زمین گرمایی که از عمده‌ترین منابع انرژی‌های پاک هستند، با وجود ناشناخته ماندن، به سرعت درحال نفوذ و گسترش اند و غفلت از آنها جبران ناپذیر است.
 
گرمایش جهانی پدیده‌ای است که منجر به افزایش میانگین دمای سطح زمین و اقیانوس‌ها شده است. گزارش‌ها حاکیست که ۱۰ مورد از گرم‌ترین سال‌های جهان از سال ۱۹۹۰ تا سال ۲۰۰۷ میلادی به ثبت رسیده‌ که در ۱۵۰ سال گذشته بی‌سابقه بوده‌ است.
منبع: ایسنا

روش های نصب استراکچر پنل خورشیدی

یکی از مهم ترین اجزای تشکیل دهنده نیروگاه های تولید برق خورشیدی از نظر هزینه های تمام شده، زیبایی، استحکام و سرعت نصب، به خصوص در پروژه های مقیاس بزرگ، استراکچر یا سازه نگهدارنده پنل های خورشیدی می باشد. انتخاب و اجرای سازه های زیبا، مستحکم و در عین حال مقرون به صرفه جهت نصب و اجرای نیروگاه های خورشیدی، یکی از اساسی ترین مراحل طرح ریزی و اجرا در پروژه های انرژی خورشیدی است.

معمولا از سه روش کلی جهت نصب پنل های خورشیدی استفاده می کنند:

1. پنل با پایه نگهدارنده ثابت: در این روش ابتدا بهترین موقعیت قرارگیری پنل ها را مشخص نموده (که معمولاً در کشور ما رو به جنوب و با زاویه بین 20 الی 30 درجه بسته به منطقه جغرافیایی) و سپس پایه ها را در مکان مورد نظر ثابت می نمایند. این روش ارزانترین روش نصب پنل خورشیدی می باشد.

 2. پنل با پایه نگهدارنده متغییر :
در این روش از استراکچرهایی استفاده می شود که قابلیت تغییر زاویه از حدود 10 تا 65 درجه را داشته باشند و با توجه به تغییر زاویه خورشید در فصول متفاوت سال بهترین حالت قرار گیری پنل را مشخص نموده و زاویه قرار گیری پنل را در همان حالت قرار می دهیم. بازده این روش حدوداً تا 20 درصد نسبت به روش ثابت بیشتر است .

3. پایه های دنبال کننده خورشید: این روش خود به دو حالت یک بعدی (حرکت افقی از شرق به غرب) و دو بعدی (حرکت عمودی از پایین به بالا) تقسیم می شود که در هر زمان بهترین حالت قرارگیری پنل ها محاسبه شده و استراکچرها بسته به محور قابل تغییرشان بصورت اتوماتیک در بهترین موقعیت قرار می گیرند. بازده این روش بین 15 الی 30 درصد افزایش می یابد ولی قیمت پیاده سازی آن زیاد است و صرفه اقتصادی ندارد فقط در مکان ها و کاربردهایی که محدودیت فضا و وزن دارند استفاده می شوند .

روش های نصب استراکچر پنل خورشیدی

در سازه نگه دارنده که پنل ها بر روی آنها نصب می شوند باید به دو نکته اساسی توجه کرد:

1. استقامت:
سازه باید علاوه بر قابلیت تحمل وزن آرایه خورشیدی، تحمل نیروی ناشی از وزش باد، زلزله و یخ را نیز داشته باشد. بنابراین برای طراحی یک سازه مناسب ابتدا باید اطلاعات هواشناسی شامل قطر یخ و میزان وزش باد را بدست آورد و نیروی ناشی از آنها را تخمین زد و سپس بر اساس آن سازه مناسب را طراحی نمود.

2. جنس:
جنس سازه باید مناسب با شرایط محیطی و آب و هوایی باشد. برای این منظور وابسته به شرایط محیطی از مواد مختلفی استفاده می شود که در ذیل به این مواد و خواص آن ها اشاره شده است.
  • آلومینیوم: سبک، محکم و مقاوم در برابر پوسیدگی، راحت برای کار کردن، جوشکاری مشکل.
  • آهن نبشی: راحت برای کارکردن، جوشکاری مشکل، در صورتی که از آهن گالوانیزه استفاده شود در برابر پوسیدگی مقاوم است در غیر این صورت براحتی زنگ می زند.
  • استیل ضد زنگ: قیمت بالا و کار کردن مشکل، جوشکاری مشکل، بسیار مناسب برای محیط های مرطوب و نمکی.
  • چوب: ارزان،کارکردن راحت و قابلیت دسترسی آسان، نامناسب برای محیط های مرطوب، برای افزایش طول عمر باید به مواد نگه دارنده آغشته شود.


روش های نصب استراکچر پنل خورشیدی


نکته بسیار مهم که در اینجا باید به آن اشاره نمود، این است که تمام اتصالات پیچ و مهره استفاده شده در سازه و سایر قسمت ها باید از جنس استیل ضد زنگ باشد. همانگونه که در شکل زیر دیده می شود پیچ ها دچار فرسودگی شده اند که این می تواند باعث سست شدن سازه و در نهایت منجر به آسیب دیدن آرایه خورشیدی شود.


روش های نصب استراکچر پنل خورشیدی

مطالب مرتبط

انواع فناوری سلول های خورشیدی

عنصر اصلی فناوری فتوولتائیک، سلول خورشیدی است که نور خورشید را به صورت مستقیم به انرژی الکتریسیته تبدیل می‌کند. سلول‌های خورشیدی از مواد نیمه رسانای حالت جامد تشکیل شده‌اند.
سلول‌های فتوولتائیک که از یک اتصال P-N ساخته شده‌اند، بدون هیچ آلودگی نور خورشید را مستقیماً به الکتریسیته تبدیل می‌کنند. اصول تولید فوتوجریان از سلول‌های فتوولتائیک در شکل زیر نشان داده شده است.

انواع فناوری سلول های خورشیدی

در واقع وقتی که نور خورشید به سطح سلول برخورد می‌کند، فوتون‌ها توسط اتم‌های نیمه هادی، الکترون‌های آزاد لایه‌ی منفی، جذب می‌شوند. این الکترون‌های آزاد از طریق مدار خارجی مسیر خود را به سمت لایه‌ی مثبت پیدا کرده و در نتیجه جریان الکتریکی از لایه‌ی مثبت به منفی جاری می‌شود.

فناوری‌های فتوولتائیک تجاری موجود و در حال توسعه را می‌توان در سه گروه: تکنولوژی کریستال، تکنولوژی فیلم نازک و تکنولوژی فتوولتائیک نوظهور و جدید دسته بندی کرد که از لحاظ راندمان جذب نور، راندمان تبدیل انرژی، تکنولوژی ساخت و هزینه‌های تولید با هم متفاوت هستند.

  • تکنولوژی کریستالی
ماده اصلی بکار رفته در ساخت سلول‌های خورشیدی سیلیس یا سیلیکون است. سیلیس ماده‌ای است که قسمت عمده پوسته زمین از آن تشکیل شده ولی این ماده عمدتاً به صورت ترکیب اکسید سلیسیم یا سیلیکا (SiO2) یافت می‌شود که در اصطلاح غیر علمی به آن ماسه می‌گویند. سلول‌های سیلیکونی به خاطر فرآیند ساخت و خالص‌سازی سیلیکون قیمت بالایی دارند.

تکنولوژی کریستالی در سه فرم: سیلیکون تک کریستالی، سیلیکون چند کریستالی و آرسنیک-‌ گالیم مورد استفاده قرار می‌گیرد.


1. سیلیکون تک کریستالی- مونو کریستال (Single (Mono)- Crystal Silicon)


سیلیکون تک کریستالی که به طور گسترده‌ای در ساخت سلول‌های خورشیدی استفاده می‌شود از یک کریستال بزرگ سیلیس تولید می‌شود. رایج بودن سیلیکون تک کریستالی به دلیل پایداری خوب، خواص الکتریکی، فیزیکی و شیمایی مرغوب سیلیکون است.

سیلیکون تک کریستالی دارای ساختار مولکولی یکنواخت است که در مقایسه با مواد غیر کریستالی، ساختار یکنواخت آن منجر به راندمان تبدیل انرژی (نسبت توان الکتریکی تولید شده توسط سلول به مقدار توان نور خورشید موجود) بالا می‌شود.

راندمان تبدیل ماژول‌های تجاری سیلیکون تک کریستالی در حدود %20-14 است اما به دلیل گران بودن سیلیکون تک کریستالی قیمت آن‌ها کمی بالا می‌باشد.

انواع فناوری سلول های خورشیدی
2. سیلیکون چند کریستالی (Poly (Multi)- Crystalline Silicon)

متشکل از دانه‌های کوچک سیلیکون‌های تک کریستالی است که در مقایسه با سلول‌های تک کریستالی دارای راندمان انرژی و هزینه ساخت کمتری هستند. راندمان تبدیل انرژی ماژول‌های تجاری سیلیکون چند کریستالی در حدود %14-10 است.

انواع فناوری سلول های خورشیدی
3. آرسنیک گالیم (Gallium Arsenide (GaAs))این نیمه هادی مرکب، از دو عنصر گالیم (Ga) و آرسنیک (As) ساخته شده است. GaAs دارای ساختار کریستالی و سطح بالای جذب نور است و نسبت به سیلیکون کریستالی دارای راندمان تبدیل انرژی بالاتری، در حدود %30-25 است.
سمی بودن آرسنیک و هزینه بالا نسبت به سیلیکون تک کریستالی از معایب سلول‌های GaAs است.
به دلیل مقاومت بالای آن در برابر گرما در سیستم‌های متمرکز  که درجه حرارت سلول‌ها زیاد است و همچنین در کاربردهای فضایی که نیاز به مقاومت بالا در برابر آسیب تشعشع و راندمان بالای سلول است، مورد استفاده قرار می‌گیرند.

انواع فناوری سلول های خورشیدی
 
  •  تکنولوژی فیلم نازک
در یک سلول فیلم نازک، لایه‌های مواد نیمه هادی با ضخامت 2-0.3 میلی‌متر روی شیشه، پلاستیک، استیل ضد زنگ و دیگر مواد زیر لایه‌ای قرار می‌گیرند.

از آنجا که مواد فیلم نازک نسبت به مواد کریستالی دارای ضریب جذب بالایی هستند، لایه رسوبی  مواد فتوولتائیک بسیار نازک در نظر گرفته می‌شوند که این منجر به کاهش هزینه سلول می‌شود. با این حال سلول‌های فتوولتائیک فیلم نازک دارای راندمان تبدیل کمی هستند.

انواع تکنولوژی‌های فیلم نازک عبارتند از: سیلیکون آمورفوس، تلورید کادمیم، CIGS

انواع فناوری سلول های خورشیدی


مقایسه سلول های فیلم نازک، مونو و پلی کریستال

انواع فناوری سلول های خورشیدی
1. سیلیکون آمورفوس (Amorphous Silicon (A-Si))

این ماده دارای مزیت ضریب جذب بالا، در حدود 40 برابر کریستال سیلیکونی است. تنها یک لایه نازک برای جذب نور مورد نیاز است که این منجر به کاهش هزینه مواد می‌شود. با این حال دارای راندمان تبدیل انرژی پایین در حدود %9-5 است.
سیلیکون آمورفوس به طور گسترده‌ای در کالاهای مصرفی کوچک مانند ساعت و ماشین حساب استفاده می‌شود.

2. تلورید کادمیم (Cadmium Telluride (CdTe))


 تلورید کادمیم دارای ضریب جذب بالایی است. تنها با ضخامت در حدود یک میلی‌متر می‌تواند 90% طیف خورشید را جذب کند و دارای کمترین هزینه تولید در میان تکنولوژی‌های فیلم نازک است.

راندمان ماژول‌های تجاری CdTe در حدود %7 است. بی ثباتی عملکرد سلول و ماژول از اشکالات عمده‌ی سلول‌های CdTe است، همچنین کادمیم یک عنصر سمی است.

3. مس، ایندیم، گالیم، سلنید و سولفید  (Copper-Indium-[Gallium]-Selenide-Sulphide (CI[G]S))

CIGS یک نیمه هادی با قدرت جذب بالاست که می‌تواند با ضخامت 0.5 میلی‌متر %90 طیف خورشید را جذب کند و دارای بالاترین راندمان در میان تکنولوژی‌های فیلم نازک است.
CIGS یک ماده موثر و پیچیده است که این پیچیدگی موجب دشواری ساخت آن می‌شود. تولید سلنید هیدروژن که یک گاز بسیار سمی است از نگرانی‌های موجود در فرآیند ساخت آن است.

در سال 2014 در آزمایشگاه EMPA به رکورد 20.4 درصد راندمان تبدیل انرژی برای سلول‏ های خورشیدی CIGS لایه نازک روی زیر لایه‏ های پلیمری انعطاف‏ پذیر دست پیدا کردند.

  •  تکنولوژی نوظهور و جدید

فناوری های این نسل در مرحله پیش از تجاری سازی به سر می برند.تکنولوژی نوظهور و جدید به دسته های زیر تقسیم می شوند:

1.  سلول های فتوولتائیک متمرکز CPV (Concentrating PV)

2. سلول های خورشیدی ارگانیک Organic PV

3. سلول های خورشیدی حساس به رنگ

4. سلول های خورشیدی پلیمری

5. سلول های خورشیدی مبتنی بر کریستال های مایع

6. فیلم های نازک پیشرفته  Advanced thin films


انواع فناوری سلول های خورشیدی
مطالب مرتبط