واحد مشترک کمکی پژوهش و مهندسی «هوش یار-تواندار»     (HT-CSURE)

واحد مشترک کمکی پژوهش و مهندسی «هوش یار-تواندار» (HT-CSURE)

Hooshyar-Tavandar Common Subsidiary Unit for Research & Engineering
واحد مشترک کمکی پژوهش و مهندسی «هوش یار-تواندار»     (HT-CSURE)

واحد مشترک کمکی پژوهش و مهندسی «هوش یار-تواندار» (HT-CSURE)

Hooshyar-Tavandar Common Subsidiary Unit for Research & Engineering

چند مطلب درباره آشنایی با هوش مصنوعی و آینده کاربردش

موتور جستجوی جدید گوگل/ تغییر بنیادین در دنیای اینترنت
دیجیاتو نوشت: همکاری مایکروسافت و OpenAI برای آوردن هوش مصنوعی به موتور جستجوی بینگ ظاهراً باعث شده است تا گوگل به سراغ یک موتور جستجوی جدید برود.
 
گوگل مشغول توسعه یک موتور جستجوی کاملاً جدید مبتنی بر هوش مصنوعی است. همچنین این شرکت روی ویژگی‌های هوش مصنوعی جدیدی برای موتور جستجوی فعلی‌اش کار می‌کند.
 
براساس گزارش نیویورک تایمز، گوگل در مراحل اولیه توسعه این سرویس جستجوی جدید است؛ سرویسی که می‌خواهد خواسته‌های کاربران را پیش‌بینی کند و تجربه بسیار شخصی‌سازی‌شده‌تری ارائه کند. هیچ برنامه زمانی مشخصی برای این موتور جستجوی مبتنی بر هوش مصنوعی گوگل وجود ندارد، بااین‌حال این کمپانی تحت اسم رمز «مگی» (Magi) روی مجموعه‌ای از قابلیت‌های هوش مصنوعی جدید برای موتور جستجوی فعلی‌اش کار می‌کند.
 قابلیت‌های هوش مصنوعی موتور جستجوی گوگل
 در میان ویژگی‌های مدنظر گوگل، یک چت‌بات قرار دارد که می‌تواند به سؤالات مهندسی نرم‌افزار پاسخ دهد و کد اسنیپت تولید کند. گوگل همچنین مشغول آزمایش قابلیتی است که به کاربران اجازه می‌دهد از طریق گفت‌وگو با چت‌بات، به‌دنبال موسیقی باشند. ظاهراً گوگل بیش از 160 نفر را مسئول توسعه این چت‌بات کرده است.
 
یکی دیگر از ویژگی‌های جدید که در مراحل توسعه قرار دارد، قابلیتی به نام «Searchalong» برای گوگل کروم است. این ویژگی به یک چت‌بات اجازه می‌دهد تا محتوای درون صفحه وب را بخواند و به شما اطلاعات متنی بدهد.
 
GIFI و Tivoli Tutor از دیگر قابلیت‌های جدید مدنظر گوگل هستند که به کاربران اجازه می‌دهند از Google Image Search برای ساخت تصاویر و گفت‌وگو با یک چت‌بات برای یادگیری زبان جدید استفاده کنند. بد نیست به این موضوع اشاره کنیم که بسیاری از این ویژگی‌ها در گذشته توسط خود گوگل به نمایش گذاشته شده‌اند یا اینکه در پلتفرم‌های دیگری مانند دولینگو وجود دارند.
 
گفته می‌شود گوگل ماه آینده میلادی از Magi برای موتور جستجوی فعلی‌اش رونمایی می‌کند و سپس در پاییز با ویژگی‌های جدیدتری روبه‌رو می‌شویم. این احتمال وجود دارد که در جریان رویداد I/O 2023 در 20 اردیبهشت‌ماه، گوگل از پروژه مگی رونمایی کند. این ویژگی‌ها ظاهراً ابتدا در اختیار یک میلیون کاربر آمریکایی قرار می‌گیرد و تا پایان 2023، 30 میلیون کاربر به آن‌ها دسترسی پیدا می‌کنند.


گوگل در حال ساخت موتور جستجوی جدید مبتنی‌بر هوش مصنوعی است

گروه فناوری: با داغ‌تر شدن رقابت هوش مصنوعی، گوگل خطرات جدیدی احساس می‌کند و طبق گزارش‌های متعدد اکنون در حال کار روی موتور جست‌وجوی جدید مبتنی‌بر هوش مصنوعی است.
گیزموچاینا می‌گوید، غول فناوری اهل مانتین‌ویوو در حال ساخت موتور جست‌وجوی جدیدی است که بر پایه‌ی هوش مصنوعی کار می‌کند و به‌عنوان به‌روزرسانی پلتفرم جست‌وجوی کنونی آن در نظر گرفته خواهد شد.
اسناد داخلی گوگل نشان می‌دهند این شرکت پروژه‌ای به‌ نام Magi دارد که هدف آن به‌روزرسانی موتور جست‌وجوی کنونی با فناوری جدید است و درحال‌حاضر حدود ۱۶۰ کارمند روی آن کار می‌کنند.
ظاهراً گوگل قصد دارد ماه آینده از Magi رونمایی کند و انتظار داریم پاییز سال جاری ویژگی‌های دیگری به این پلتفرم اضافه شود. غول جست‌وجوی اینترنت در رویداد بعدی I/O خود جزئیات بیشتری درمورد برنامه‌هایش ارائه خواهد داد. طبق گزارش‌های اخیر، Magi ابتدا دردسترس یک میلیون کاربر ایالات‌ متحده قرار خواهد گرفت و تا پایان سال ۳۰ میلیون کاربر دیگر می‌توانند از آن بهره ببرند.

خبر توسعه‌ی موتور جست‌وجوی مبتنی‌بر هوش مصنوعی جدید گوگل در حالی منتشر می‌شود که زمزمه‌هایی درمورد جایگزینی احتمالی موتور جست‌وجوی بینگ به‌جای گوگل در محصولات سامسونگ مطرح شده است.
مایکروسافت اخیراً از هوش مصنوعی در بینگ و سایر خدمات و محصولاتش استفاده کرده است و طی ماه‌های گذشته همواره در سرتیتر خبرهای فناوری حضور دارد. این شرکت با سرمایه‌گذاری چند میلیارد دلاری در استارتاپ OpenAI از فناوری‌های هوش مصنوعی آن بهره می‌برد.


آینده بشریت و هوش مصنوعی؛ نوش دارو یا هیولای فرانکشتاین؟

آینده بشریت و هوش مصنوعی؛ نوش دارو یا هیولای فرانکشتاین؟
ساختن تسلیحات هسته‌ای برای شرکت‌های فناوری به تنهایی قانونی نیست با این وجود، غول‌های فناوری در رقابت برای توسعه سیستم‌هایی هستند که خودشان اذعان دارند احتمالا خطرناک‌تر از خود تسلیحات هسته‌ای خواهند بود. پیشرفت در هوش مصنوعی به طرز خارق العاده‌ای سریع رخ داده و تقریبا هیچ توجهی به مقررات ایمنی صورت نمی‌گیرد.
در نامه سرگشاده‌ای درخواست شده آزمایش‌های مرتبط با هوش مصنوعی ۶ ماه متوقف شود. افرادی، چون "ایلان ماسک" مدیرعامل تسلا، "استیو وزنیاک" بنیانگذار اپل و "یووال نوح هراری" نویسنده و دانشمند علوم سیاسی از امضاکنندگان این نامه هستند. هدف نامه این است که به شرکت‌های هوش مصنوعی و تدوین‌کنندگان پادمان‌ها مهلتی قانونی بدهند تا از جامعه در برابر خطرات احتمالی فناوری محافظت کنند.
 به گزارش فرارو به نقل از مدرن دیپلماسی؛ هوش مصنوعی مبتنی بر شبکه عصبی نیرو‌های رقیب را در هر زمینه دیگری از جمله ترجمه، بازی‌های ویدئویی و حتی شطرنج درهم شکسته است. سیستم‌های یادگیری ماشین بسیار توانمند شده‌اند و محققان ادعا می‌کنند که آن سیستم‌ها مقیاس پذیر هستند.
اصطلاح مقیاس‌پذیر به این واقعیت اشاره دارد که هرچه پول و داده‌های بیش‌تری وارد شبکه عصبی شما شود، بزرگ‌تر خواهد شد و زمان بیش‌تری برای آموزش و عملکرد بهتر صرف می‌شود. حتی با وجود این که شرکت‌های بزرگ فناوری اکنون عملیات‌های چند میلیون دلاری را برای سیستم‌های خود انجام می‌دهند هیچ کس به درک محدودیت‌ها و خطرات احتمالی آن نزدیک نشده است.
 "ری کورزویل" آینده پژوه، پیشگویی کرده که رایانه‌ها تا سال ۲۰۲۹ همان سطح هوش انسان‌ها را خواهند داشت. او می‌گوید: "۲۰۲۹ تاریخی است که من پیش بینی کرده ام که هوش مصنوعی آزمایش تورینگ معتبر را پشت سر بگذارد و در نتیجه به سطوح انسانی دست یابد. من تاریخ ۲۰۴۵ را برای منحصر به فرد بودن تعیین کرده ام زمانی که با ادغام با هوشی که ایجاد کرده‌ایم، هوش موثر خود را یک میلیارد برابر می‌کنیم".
 هوش مصنوعی با پیشرفت‌های بی‌سابقه‌ در فناوری باعث بهبود وضعیت مردم می‌شود همچنین بر معنای واقعی انسان بودن در قرن بیست و یکم نیز تأثیر می‌گذارد.
 بدون شک جنبه‌های روشنی در آینده هوش مصنوعی وجود دارد از جمله پزشکی دقیق که می‌تواند ژنتیک افراد را بهبود بخشد و تشخیص برای درمان بیماری را دقیق‌تر، در دسترس‌تر و مقرون به صرفه‌تر سازد.
 دستیار‌های مجازی مانند سیری، الکسا و سایر برنامه‌ها فعالیت‌های پیش پا افتاده برای انسان‌ها انجام می‌دهند که به سبک زندگی آرام‌تر کمک می‌کنند. نرم افزاری مانند چت جی پی تی با پاسخ دادن به شیوه‌ای شبیه انسان و حل پرسش‌های پیچیده به پردازش داده‌ها و زبان کمک می‌کند.
 جنبه تاریک هوش مصنوعی، خطرات اجتناب ناپذیر خاصی را القا می‌کند از جمله نظارت انبوه، سوء استفاده از داده‌ها و از بین رفتن حریم خصوصی دیجیتال.
 چنین نظارت دیجیتالی‌ای در حال حاضر در سیستم اعتبار اجتماعی چین انجام می‌شود که نظارت را به تمام بخش‌های زندگی شهروندان گسترش می‌دهد.
 نیروی جنگ مدرن با تکنیک‌های خودکار یکی دیگر از نگرانی‌های اصلی است، زیرا روش‌های برتری در جنگ توسط فناوری پیشرفته دیکته می‌شود.
 یکی از مهم‌ترین نگرانی‌های مربوط به ظهور هوش مصنوعی، توانایی آن در جایگزینی مشاغل انسانی است. کارایی و دقت مدل‌های ماشینی به راحتی می‌تواند از هوش انسانی پیشی بگیرد. پیشرفت‌های تکنولوژیکی در هوش مصنوعی از زمان اختراع نرم افزاری مانند چت جی پی تی توسط شرکت Open AI تحت حمایت مایکروسافت، بسیار زیاد شده و آن شرکت اخیرا چت جی پی تی و جی پی تی -۴ را منتشر کرده؛ دو چت بات تولید متن که باعث ایجاد جنون در بین متخصصان هوش مصنوعی می‌شوند.
 چت بات‌های به ظاهر بی ضرر به منظور  پاسخ‌های انسان‌گونه، الگوبرداری شده اند که بسیاری را غافلگیر کرده، زیرا غول‌های بزرگ فناوری در سراسر جهان در حال رقابت برای ساخت هوش مصنوعی مولد هستند.
 دانشمندان، محققان و مدیران عامل شرکت‌های فناوری متوجه این وضعیت نگران کننده شده اند و در نامه سرگشاده توقف ۶ ماهه به این موضوع اشاره شده است.
 در این نامه سرگشاده آمده است که پویایی فعلی هوش مصنوعی خطرناک می‌باشد، زیرا آزمایشگاه‌های هوش مصنوعی در یک مسابقه غیرقابل کنترل برای توسعه سیستم‌های یادگیری قرار دارند که هیچ کس حتی سازندگان نمی‌توانند آن را درک، پیش بینی یا کنترل کنند. آنان خواستار مهلت قانونی ۶ ماهه شده اند تا به شرکت‌های هوش مصنوعی زمان داده شود، اقداماتی را برای محافظت از جامعه در برابر خطرات احتمالی فناوری تدوین کنند.
 نویسندگان نامه نوشته اند اگر تعلیق ۶ ماهه امکان پذیر نباشد دولت‌ها باید وارد عمل شده و این تعلیق را اجرا نمایند. تهدید بالقوه هوش مصنوعی شامل سوء استفاده از داده‌ها و موتور‌های اطلاعات نادرست است که حریم خصوصی را نقض می‌کنند. در نتیجه مردم با دریافت اطلاعات جعلی و ساختگی گمراه خواهند شد.
 این مدل‌ها و نرم‌افزار‌های هوش مصنوعی توسط نیروی کاری پشتیبانی و ساخته می‌شوند که تحت شرایط نامناسب کار می‌کنند. طبق گزارش‌ها تحقیقات نشریه "تایم" نشان می‌دهد که Open AI از کارگران کنیایی مهاجر با درآمد کمتر از ۲ دلار در ساعت برای ساخت چت جی پی تی استفاده کرده است. برخی از فعالان عرصه فناوری در مورد تهدیدات امنیتی بیشتر هم هشدار داده اند.
 این دستیاران دیجیتالی که با وب ارتباط دارند ایمیل‌ها را می‌خوانند و می‌نویسند و می‌توانند فرصت‌های جدیدی را در اختیار هکر‌ها قرار دهند و اطلاعات شخصی و همچنین اسرار دولتی محرمانه را به خطر بیاندازند. دستکاری و بهره برداری از نرم افزار‌ها برای دسترسی به داده‌های ذخیره شده برای هکر‌ها کار آسانی می‌باشد، زیرا نرم افزار‌های هوش مصنوعی فاقد پروتکل‌های حفاظتی کافی هستند.
هیچ حد و مرزی برای نبوغ انسانی وجود ندارد. هوش مصنوعی یکی از این اختراعات است و می‌تواند و احتمالا به طور غیرقابل درکی مخرب خواهد بود. هوش مصنوعی بسیار خطرناک می‌باشد، زیرا ممکن است روزی فرا برسد که دیگر در کنترل ما نباشد، چراکه فاقد آگاهی انسانی است و این امکان وجود دارد که کاری انجام دهد که با اهداف انسانی هماهنگ نباشد یا یک تهدید وجودی باشد.
ساختن تسلیحات هسته‌ای برای شرکت‌های فناوری به تنهایی قانونی نیست با این وجود، غول‌های فناوری در  رقابت برای توسعه سیستم‌هایی هستند که خودشان اذعان دارند احتمالا خطرناک‌تر از خود تسلیحات هسته‌ای خواهند بود. پیشرفت در هوش مصنوعی به طرز خارق العاده‌ای سریع رخ داده و تقریبا هیچ توجهی به مقررات ایمنی صورت نمی‌گیرد.
 تنها زمان نشان خواهد داد که آیا پیشرفت‌های هوش مصنوعی در سالیان آینده نوشدارویی برای مشکلات جهانی خواهد بود یا هیولای فرانکشتاینی که وجود بشر را تهدید می‌کند.

چرا انسان‌ها هرگز هوش مصنوعی را درک نخواهند کرد؟
با وجود گذشت دهه‌ها از ساخت اولین سیستم‌های هوش مصنوعی، ما هنوز درک درستی از عملکرد این فناوری نداریم و احتمالاً هرگز نخواهیم داشت.

دیجیاتو نوشت*: «جک دی کوان»، ریاضی‌دان و زیست‌شناسی نظری در سال 1956 در سفری یک‌ساله به لندن به ملاقات «ویلفرد تیلور» و «دستگاه یادگیری» عجیب‌وغریب او رفت. او از دیدن دستگاه بزرگ و پیچیده‌ای که پیش رویش قرار داشت، شگفت‌زده شده بود. کوان تنها می‌توانست بایستد و عملکرد این ماشین را تماشا کند که ظاهراً داشت یک طرح حافظه را شبیه‌سازی می‌کرد؛ به‌عبارت دیگر این دستگاه می‌توانست یاد بگیرد که چگونه رابطه میان داده‌ها را بیابد و اطلاعات استخراج کند.

دستگاه تیلور شاید در ظاهر شبیه مجموعه بزرگی از مدارها بود که به هم لحیم و با مقدار زیادی سیم به یکدیگر متصل شده بودند، اما آن‌چه کوان می‌دید نمونه اولیه‌ای از یک شبکه عصبی بود؛ سیستمی که در نهایت پس از چند دهه به پیشرفته‌ترین فناوری‌های هوش مصنوعی از جمله ChatGPT تبدیل شد. فناوری زیربنایی ChatGPT همین شبکه عصبی اما پیشرفته‌تر است.

کوان و تیلور در سال 1956 می‌ایستادند و عملکرد این دستگاه را تماشا می‌کردند، اما نمی‌دانستند که این ماشین چگونه کارهای خود را انجام می‌دهد. پاسخ معمای مغز ماشینی تیلور در جایی میان «نورون‌های آنالوگ»، در رابطه میان حافظه ماشینی و از آن مهم‌تر، در این حقیقت وجود داشت که این عملکردهای خودکار را نمی‌توان به‌طور کامل توضیح داد.

عبارت شبکه عصبی دربرگیرنده دامنه وسیعی از سیستم‌هاست. به‌گفته شرکت آی‌بی‌ام، شبکه‌های عصبی‌های – که با عنوان شبکه‌های عصبی مصنوعی (ANN) یا شبکه‌های عصبی شبیه‌سازی‌شده (SNN) هم شناخته می‌شوند – زیرمجموعه‌ای از مبحث یادگیری ماشینی هستند و در دل الگوریتم‌های یادگیری عمیق قرار می‌گیرند. نکته مهم این‌جاست که این عبارت و شکل پیاده‌سازی آن با الهام از مغز انسان ساخته شده است و شیوه ارسال سیگنال توسط نورون‌های زیستی به یکدیگر را شبیه‌سازی می‌کند.

چرا انسان‌ها هرگز هوش مصنوعی را درک نخواهند کرد؟
شبکه‌های عصبی آینده هوش مصنوعی هستند
در مراحل ابتدایی شاید تردیدهایی درباره ارزش این سیستم‌ها وجود داشت، اما با گذشت سال‌ها، سیستم‌های هوش مصنوعی بیشتر و بیشتر به‌سمت شبکه‌های عصبی حرکت کردند. حالا گفته می‌شود که این شبکه‌ها آینده هوش مصنوعی را شکل خواهند داد. این فناوری پیچیدگی‌های زیادی را برای ما و آن‌چه ما را تعریف می‌کند، به‌وجود می‌آورند. اخیراً زمزمه‌هایی را در این رابطه شنیده‌ایم. گروهی از فعالان فناوری ازجمله ایلان ماسک خواستار توقف شش‌ماهه توسعه مدل‌های هوش مصنوعی شده‌اند تا درباره این پیچیدگی‌ها اطمینان بیشتری پیدا کنند.

البته ساده‌لوحانه است اگر این شبکه‌های عصبی را صرفاً به‌عنوان ابزارهای هیجان‌انگیز و داغ در نظر بگیریم. این فناوری مدت‌هاست که به زندگی ما وارد شده است. در سال 1989 گروهی از محققان آزمایشگاه AT&T Bell از روش انتشار معکوس استفاده کردند تا سیستمی را برای شناسایی کدهای پستی دست‌نویس آموزش بدهند. در همین اواخر، مایکروسافت از نسخه جدید بینگ پرده برداشت که با کمک هوش مصنوعی می‌تواند به کمک‌خلبان شما برای وبگردی تبدیل شود.

هوش مصنوعی با تکیه بر حجم عظیمی از داده‌ها برای یافتن الگوها می‌تواند برای انجام کارهایی مثل تشخیص سریع تصاویر استفاده شود. در نتیجه، برای مثال امروز سیستم‌های تشخیص چهره را داریم. همین ویژگی در تشخیص الگوها باعث به‌وجود آمدن ابزارهای دیگری مثل ابزارهای پیش‌بینی قیمت سهام شده است.

شبکه‌های عصبی شیوه درک و ارتباطات ما را هم تغییر می‌دهند. برای مثال سرویس گوگل ترنسلیت که توسط تیم گوگل Brain توسعه داده شده است، نمونه دیگری از این شبکه‌ها به‌حساب می‌آید. از طرفی، مردم دیگر نمی‌خواهند با کامپیوترها شطرنج یا شوگی بازی کنند. کامپیوترها تسلط بالایی بر قوانین دارند و با کمک شبکه‌های عصبی می‌توانند همه استراتژی‌ها و حرکات ممکن را به‌خاطر بیاورند و بسیار بهتر از انسان‌ها این بازی‌ها را انجام دهند.

ولی گستره قابلیت‌های این فناوری فقط به همین موارد محدود نمی‌شود. اگر جست‌وجوی ساده‌ای به‌دنبال پتنت‌های مربوط به شبکه‌های عصبی داشته باشید، به 135,828 نتیجه می‌رسید. با این سرعت بالای توسعه، احتمال این که ما بتوانیم یک روز اثر واقعی هوش مصنوعی را متوجه شویم، کم و کمتر می‌شود.

چرا انسان‌ها هرگز هوش مصنوعی را درک نخواهند کرد؟
لایه‌های اسرارآمیز ناشناختگی
توجه به تاریخ شبکه‌های عصبی نکته مهمی را درباره تصمیم‌گیری‌های خودکار به ما یادآوری می‌کند، تصمیم‌گیری‌هایی که حال حاضرمان را تعریف می‌کنند یا احتمالاً بر آینده‌مان اثر بزرگ‌تری خواهند گذاشت. همین تصمیم‌گیری‌های خودکار به ما نشان می‌دهد که احتمالاً با گذشت زمان درک کمتری نسبت به هوش مصنوعی و آثار آن پیدا خواهیم کرد.

هوش مصنوعی نه یک جعبه سیاه، بلکه چیزی است که ریشه آن به هدف و طراحی این سیستم‌ها برمی‌گردد. انسان همواره به‌دنبال چیزهای غیرقابل‌توضیح بوده است. هرچه یک سیستم ناشناخته‌تر باشد، تصور می‌شود که اصیل‌تر و پیشرفته‌تر است. مسئله فقط این نیست که این سیستم‌ها دارند پیچیده‌تر می‌شوند یا مالکیت‌های فکری جلوی دسترسی به سازوکارهای آن‌ها را می‌گیرد (هرچند مورد دوم بی‌تأثیر هم نیست). در عوض باید گفت کسانی که این فناوری را توسعه می‌دهد علاقه و اشتیاق خاصی نسبت به «ناشناختگی» دارند.

این رازآلودگی حتی در فرم و گفتمان شبکه‌های عصبی نهادینه شده است. این سیستم‌ها دارای لایه‌های عمیق زیادی هستند – که نام یادگیری عمیق از همین‌جا می‌آید – و در این اعماق لایه‌های مخفیانه‌ای وجود دارند که اسرارآمیزتر به‌نظر می‌رسند. اسرار این سیستم‌ها با فاصله زیادی از لایه‌های سطح در اعماق این سیستم‌ها قرار دارد.

احتمالش بالاست که هرچه اثر هوش مصنوعی در زندگی ما بیشتر شود، درک ما از چرایی و چگونگی این فناوری کمتر شود. امروزه افراد زیادی در تلاشند تا هوش مصنوعی را قابل‌درک کنند. ما می‌خواهیم بدانیم این فناوری چگونه کار می‌کند و تصمیم‌گیری‌های خود را انجام می‌دهد. اتحادیه اروپا از ریسک‌های غیرقابل‌پذیرش و کاربردهای خطرناک هوش مصنوعی نگران است. ازاین‌رو، آن‌ها مشغول کار روی قانون جدیدی برای هوش مصنوعی هستند که می‌خواهد استانداردهایی را برای توسعه ایمن، قابل‌اطمینان و اخلاقی این فناوری تدوین کند.

این قوانین جدید براساس نیاز به توضیح‌پذیری تنظیم می‌شوند، و درخواست می‌کنند که سیستم‌های هوش مصنوعیِ پرریسک مستندات مناسب، شفافیت، داده‌های قابل ردیابی، نظارت انسانی و دقت بالایی داشته باشند. این پیش‌نیازها می‌تواند ریسک خطرات این فناوری را کاهش دهد. وجود قوانین نه‌فقط برای ابزارهایی مثل سیستم‌های خودران اتومبیل‌ها بلکه برای تمام سیستم‌های آینده ضروری است، چون می‌توانند حقوق بشر را تهدید کنند.

این اقدامات بخشی از فراخوانی عمومی به‌منظور افزایش شفافیت در حوزه هوش مصنوعی است تا فعالیت‌ها در این زمینه قابل بررسی، حساب‌رسی و ارزیابی باشد. مثال دیگری که در این زمینه می‌توان زد سیاست‌های Royal Society در زمینه هوش مصنوعیِ توضیح‌پذیر است. این انجمن می‌گوید روزبه‌روز افراد بیشتری در سراسر دنیا خواستار شکلی از توضیح‌پذیری برای هوش مصنوعی هستند تا بتوان اصول اخلاقی را در طراحی و پیاده‌سازی این سیستم‌ها به کار گرفت.

بااین‌حال، داستان شبکه‌های عصبی به ما نشان می‌دهد که احتمالاً هر سال از این هدف دورتر خواهیم شد.

چرا انسان‌ها هرگز هوش مصنوعی را درک نخواهند کرد؟
الهام‌گرفته از مغز انسان
شبکه‌های عصبی شاید سیستم‌های پیچیده‌ای باشند، اما چند اصل مشخص دارند. این شبکه‌ها با الگوبرداری از مغز انسان ساخته می‌شوند، یعنی سعی می‌کنند شکل‌های بیولوژیکی و فکری مغز را کپی یا شبیه‌سازی کنند. آن‌طور که آی‌بی‌ام می‌گوید، این سیستم‌ها از نظر ساختار و طراحی از لایه‌هایی از گره‌ها (Node) ساخته شده‌اند که شامل یک لایه ورودی، یک یا چند لایه مخفی و یک لایه خروجی است.

در این ساختار هر گره یا نورون مصنوعی به نورون‌های دیگر وصل شده است. از آن‌جایی که این نورون‌ها برای تولید خروجی نیازمند ورودی و اطلاعات هستند، با اتکا بر داده‌های تمرینی آموزش می‌بینند و در طول زمان دقت خود را افزایش می‌دهند. این جزئیات فنی اهمیت دارد، اما تمایل به مدل‌سازی این سیستم‌ها با الگوبرداری از پیچیدگی مغز انسان نیز مهم است.

آگاهی از جاه‌طلبی پشت این سیستم‌ها، در درک تأثیر این جزئیات فنی بر عملکرد سیستم‌ها نقش حیاتی دارد. «تیوو کوهونن»، متخصص شبکه‌های عصبی در مصاحبه‌ای در سال 1993 نتیجه‌گیری کرده بود که رویایش ساخت یک سیستم «خود-سامان‌ده» است که بتواند شبیه سیستم عصبی ما عمل کند. به‌عنوان مثال کوهونن می‌گفت چگونه سیستمی که بر خودش نظارت دارد و خودش را مدیریت می‌کند، می‌تواند به‌عنوان دستگاهی برای نظارت بر سایر ماشین‌ها استفاده شود. او باور داشت که با این سازوکار می‌شود در یک نگاه متوجه شد که وضعیت سیستم‌های پیچیده چگونه است.

هدف کلی داشتن سیستمی بود که بتواند خود را با وضعیت محیطش انطباق بدهد. چنین سیستمی می‌تواند فوری و خودکار عمل کند و شبیه سیستم عصبی انسان باشد. رویای متخصصانی مثل کوهونن این بود که سیستم‌ها بتوانند بدون نیاز به دخالت انسان کار کنند. پیچیدگی‌ها و ناشناختگی‌های مغز، سیستم عصبی و جهان واقعی خیلی زود بر طراحی و توسعه شبکه‌های عصبی هم اثر گذاشت.

چرا انسان‌ها هرگز هوش مصنوعی را درک نخواهند کرد؟
شبیه‌سازی مغز، لایه به لایه
حتماً متوجه شده‌اید که وقتی درباره شبکه‌های عصبی حرف می‌زنیم، همیشه بخشی از این معادله به پیچیدگی مغز انسان مربوط می‌شود، چرا که منبع الهام اصلی این سیستم‌ها بوده است. مغز هنوز یکی از ناشناخته‌های بزرگ جهان است و با این وجود به‌عنوان الگوی عملکرد شبکه‌های عصبی انتخاب شده است. بنابراین طبیعی است که درک این سیستم‌ها هم کار دشواری باشد.

«کارور مید»، مهندس رایانش عصبی در همین باره مبحث جالبی را پیرامون مفهومی موسوم به «کوه یخ شناختی» مطرح می‌کند. او می‌گوید ما فقط از نوک کوه یخ خودآگاهی اطلاع داریم و فقط همان قسمت کوچک را می‌بینیم. در نتیجه، بخش بسیار بزرگ‌تری وجود دارد که در زیر سطح آب ناشناخته باقی مانده است.

«جیمز اندرسون» که در سال 1998 چند وقتی بود روی شبکه‌های عصبی کار می‌کرد، متوجه شد که در بحث تحقیقات پیرامون مغز، بزرگ‌ترین چیزی که می‌دانیم صرفاً نوعی آگاهی است، آگاهی از این که ما واقعاً نمی‌دانیم در جهان چه اتفاقاتی در جریان است.

«ریچارد واترز»، خبرنگار فناوری نشریه فایننشال تایمز در سال 2018 در یادداشتی نوشت که چگونه شبکه‌های عصبی براساس نظریه‌ای پیرامون نحوه عملکرد مغز انسان مدل‌سازی شده‌اند و داده‌ها را از طریق لایه‌هایی از نورون‌های مصنوعی عبور می‌دهند تا به یک الگوی قابل‌تشخیص برسند.

واترز می‌گفت این موضوع مشکلی را به‌وجود می‌آورد، چون برخلاف مدارهای منطقی که در برنامه‌های نرم‌افزاری سنتی به کار گرفته می‌شدند، هیچ راهی برای ردیابی این روندهای جدید وجود ندارد و نمی‌توان دقیقاً گفت که کامپیوتر چطور به این پاسخ‌ها رسیده است. واترز نتیجه گرفته بود که این خروجی‌ها را نمی‌توان معکوس کرد. استفاده از این شیوه مدل‌سازی از مغز، یعنی عبوردادن داده‌ها از میان تعداد زیادی لایه، به‌معنای این است که نمی‌توان به‌راحتی مسیر به‌دست‌آمدن پاسخ را ردیابی کرد. چندلایه‌بودن سیستم یکی از دلایل اصلی این مشکل است.

چرا انسان‌ها هرگز هوش مصنوعی را درک نخواهند کرد؟
هدف اصلی هوش مصنوعی انطباق‌پذیری است
دانشمندانی مثل مید و کوهونن می‌خواستند سیستمی بسازند که ذاتاً بتواند خود را با جهان اطرافش انطباق بدهد. چنین سیستمی می‌تواند با توجه به شرایط پاسخ‌های متفاوت ارائه کند. مید به‌روشنی باور داشت که ارزش شبکه‌های عصبی به همین توانمندی در رسیدن به انطباق‌پذیری است. او همچنین می‌گفت که دستیابی به این امکان هدف اصلی آن‌هاست. او معتقد بود که این انطباق‌پذیری به‌خاطر ماهیت جهان ما لازم است، چون همه‌چیز در آن تغییر می‌کند.

به این مسئله باید به‌طور خاص رسیدگی می‌شد، چون مید باور داشت که این موضوع مدت‌ها پیش توسط سیستم عصبی آنها انجام شده بود. این دو متخصص نه‌تنها با تصویری از مغز و ناشناخته‌های آن کار می‌کردند، بلکه آن را با بینشی از «جهان واقعی» و تردیدها، ناشناخته‌ها و تغییرات آن ترکیب می‌کردند. مید اعتقاد داشت که این سیستم‌ها باید بتوانند بدون دریافت دستورالعمل‌های جدید به شرایط گوناگون پاسخ بدهند و خود را با آن‌ها منطبق کنند.

در همان حوالی زمانی در دهه 1990، «استفن گروسبرگ»، متخصص سیستم‌های شناختی که در زمینه ریاضیات، روانشناسی و مهندسی زیست‌پزشکی کار کرده بود، هم باور داشت که انطباق‌پذیری چیزی است که در درازمدت اهمیت بسیاری پیدا می‌کند. گروسبرگ در حین مدل‌سازی شبکه‌های عصبی با خود فکر کرد که مهم‌ترین نکته این است که چطور روش‌های اندازه‌گیری بیولوژیکی و سیستم‌های کنترلی ما طراحی شده‌اند تا به‌شکلی سریع و پایدار در لحظه خود را با جهانی که به سرعت در حال تغییر است، انطباق بدهند.

همان‌طور که بالاتر درباره رویای کوهونن درباره یک سیستم «خود-سامان‌ده» گفتیم، فهم «جهان واقعی» تبدیل به زمینه اصلی برای تبیین پاسخ‌ها و انطباق‌هایی می‌شود که درون این سیستم‌ها کارگذاری خواهند شد. حال این که چگونه این جهان را درک و تصور کنیم، بدون شک بر نحوه طراحی سیستم‌هایی با قابلیت انطباق‌پذیری اثر خواهد گذاشت.

چرا انسان‌ها هرگز هوش مصنوعی را درک نخواهند کرد؟
لایه‌های مخفی هوش مصنوعی
با افزایش تعداد لایه‌ها، یادگیری عمیق به عمق‌های جدیدی رسید. «لری هاردستی»، نویسنده علوم کامپیوتر، می‌گوید شبکه‌های عصبی با اطلاعاتی آموزش داده می‌شود که به لایه پایینی آن‌ها – یعنی لایه ورودی – داده می‌شود و از لایه‌های بعدی می‌گذرد و به روش‌های پیچیده با یکدیگر ترکیب می‌شود تا در نهایت به شکلی بسیار متفاوت به لایه خروجی برسد.

هرچه تعداد لایه‌ها بیشتر باشد، تحولات عظیم‌تر می‌شود و فاصله میان ورودی و خروجی افزایش می‌یابد. توسعه پردازشگرهای گرافیکی (GPU) امکان ایجاد شبکه‌های یک‌لایه در دهه 1960 و شبکه‌های سه‌لایه در دهه 1980 را فراهم کرد. امروزه شبکه‌هایی با 10، 15 و حتی 50 لایه داریم.

شبکه‌های عصبی دارند عمیق‌تر می‌شوند. به‌گفته هاردستی، همین افزودن لایه‌هاست که کلمه «عمیق» را در «یادگیری عمیق» به‌وجود آورده است. این مسئله اهمیت دارد، چون در حال حاضر یادگیری عمیق پشت بهترین سیستم‌ها در تقریباً هر حوزه‌ای از تحقیقات پیرامون هوش مصنوعی است.

اما این معما حتی از این هم پیچیده‌تر می‌شود. با افزایش لایه‌ها در شبکه‌های عصبی، پیچیدگی آن‌ها بیشتر شده است. این مسئله همچنین به چیزی منجر شده که ما از آن با عنوان «لایه‌های مخفی» یاد می‌کنیم. بحث پیرامون بهترین تعداد لایه‌های مخفی در شبکه‌های عصبی همچنان ادامه دارد. «بئاتریس فازی»، تئوریسین رسانه‌ای می‌گوید به‌خاطر نحوه عملکرد شبکه‌های عصبی عمیق، و اتکا بر لایه‌های عصبی مخفی که میان اولین لایه نورون‌ها (لایه ورودی) و آخرین لایه آن‌ها (لایه خروجی) قرار گرفته‌اند، تکنیک‌های یادگیری عمیق اغلب حتی برای توسعه‌دهندگان آن‌ها غیرشفاف و غیرقابل‌فهم هستند.

با افزایش تعداد لایه‌ها (مشتمل بر لایه‌های مخفی) توضیح‌پذیری این سیستم‌ها کمتر می‌شود. «کاترین هیلز»، متفکر برجسته حوزه رسانه در این باره می‌گوید محدودیت‌هایی پیرامون میزان فهمی که می‌توانیم درباره این سیستم‌ها داشته باشیم، وجود دارد و این مسئله تحت‌تأثیر شبکه لایه‌های مخفی و الگوریتم‌های یادگیری عمیق است.

چرا انسان‌ها هرگز هوش مصنوعی را درک نخواهند کرد؟

در جست‌وجوی توضیح‌ناپذیر
تمام این پیشرفت‌ها بخشی از چیزی است که «تاینا بوچر»، جامعه‌شناس فناوری از آن با عنوان «مشکل ناشناخته» نام می‌برد. «هری کالینز»، محقق هوش مصنوعی می‌گوید هدف شبکه‌های عصبی این است که احتمالاً توسط یک انسان نوشته شوند اما در ادامه به حیات مستقل خود ادامه دهند. بااین‌حال، او می‌گوید شیوه دقیق عملکرد این برنامه‌ها می‌تواند به‌شکل یک معما باقی بماند. این موضوع متأثر از همان رویای دیرینه ساخت سیستم‌های خود-سامان‌ده است.

گفتنی است که ناشناخته‌ها و ناشناختنی‌ها از همان ابتدا به‌عنوان یکی از اصول بنیادین این سیستم‌ها دنبال شده‌اند. پس این احتمال وجود دارد که هر چه اثر هوش مصنوعی در زندگی ما بیشتر شود، فهم ما از چرایی و چگونگی این سیستم‌ها کمتر شود.

بااین‌وجود، همان‌طور که گفتیم خیلی‌ها نمی‌خواهند این مسئله را بپذیرند. بشر می‌خواهد بداند هوش مصنوعی چطور کار می‌کند، چطور تصمیم‌های خود را می‌گیرد و این تصمیم‌ها چه تأثیری بر ما خواهد داشت. اما وقتی حرف از هوش مصنوعی توضیح‌پذیر و شفاف به میان می‌آید، داستان شبکه‌های عصبی به ما یادآوری می‌کند که به احتمال زیاد هر چه جلوتر برویم، فاصله ما با این هدف بیشتر خواهد شد.

*منبع: BBC


هوش مصنوعی نولان؛ موضوع بدهید، فیلم‌نامه تحویل بگیرید!

هوش مصنوعی نولان؛ موضوع بدهید، فیلم‌نامه تحویل بگیرید!
این هوش مصنوعی در مراحل اولیه‌ی خود قرار دارد و ممکن است در ساخت فیلمنامه برای شما، کمی باگ داشته باشد.

مگ‌تک نوشت: دنیای هوش‌های مصنوعی، هرروز غافلگیری‌های عجیبی برای ما دارد و هرچه می‌گذرد بیش از پیش کاربران را شگفت‌زده می‌کند. این‌بار نوبت سینما و علاقه‌مندان به دنیای هنر است که از قدرت هوش مصنوعی لذت ببرند و یا حتی بترسند!

هوش مصنوعی نولان، یک ربات هوش مصنوعی است که از شما موضوع و عنوان فیلمنامه را دریافت می‌کند و سپس یک فیلمنامه از موضوعی که شما درخواست کرده‌اید تحویل‌تان می‌دهد. این ربات هوش مصنوعی حتی قادر است تا از کلمات و جمله‌هایی که برای شما در فیلمنامه نوشته است، یک تصویر بسازد.

البته لازم به ذکر است که این هوش مصنوعی در مراحل اولیه‌ی خود قرار دارد و ممکن است در ساخت فیلمنامه برای شما، کمی باگ داشته باشد. اما قطعا به وجود آمدن چنین رباتی قطعا در آینده می‌تواند دنیای فیلم و سینما را تحت تاثیر قرار دهد و از نویسندگان فیلمنامه بی نیاز کند.

ضمنا هنوز مشخص نیست که این هوش مصنوعی ارتباطی به کریستوفر نولان کارگردان بزرگ سینما دارد یا فقط یک ادای احترام به این فیلم‌ساز مطرح و افسانه‌ای است؟

ارزیابیهایی درباره برخی پیآوردهای هوش مصنوعی 2

محتمل‌ترین نتیجه هوش مصنوعی فوق‌العاده هوشمند: همه خواهیم مرد!
"الیزر یودکوفسکی" می‌گوید بشریت برای زنده ماندن از رویارویی با هوش مصنوعی بسیار هوشمندتر آماده نیست.
یک محقق برجسته هوش مصنوعی هشدار داد که متوقف کردن توسعه سیستم‌های هوش مصنوعی پیشرفته در سراسر جهان و مجازات شدید افرادی که این مهلت قانونی را نقض می‌کنند تنها راه نجات بشریت از انقراض است.
 
به گزارش فرارو به نقل از راشاتودی؛ "الیزر یودکوفسکی" یکی از بنیانگذاران موسسه تحقیقاتی هوش ماشینی (MIRI) روز چهارشنبه در مقاله‌ای نظری برای نشریه "تایم" توضیح داد که چرا طوماری را امضا نکرده است که از تمام آزمایشگاه‌های هوش مصنوعی می‌خواهد که فورا حداقل برای شش ماه آموزش سیستم‌های هوش مصنوعی قوی‌تر از جی پی تی -۴ (یک مدل زبان بزرگ چند وجهی است که اوایل ماه جاری توسط Open AI منتشر شد) را متوقف کنند.
 
یودکوفسکی استدلال کرد که نامه امضا شده توسط افرادی مانند ایلان ماسک و استیو وزنیاک مدیر اپل برای حل مشکلی که به دلیل توسعه سریع و کنترل نشده هوش مصنوعی ایجاد می‌شود بسیار ناچیز است.
 
 
محتمل‌ترین نتیجه هوش مصنوعی فوق‌العاده هوشمند: همه خواهیم مرد!
الیزر یودکوفسکی؛ محقق برجسته هوش مصنوعی
 
او نوشت: "محتمل‌ترین نتیجه ساخت یک هوش مصنوعی فوق العاده هوشمند تحت هر چیزی که از راه دور مانند شرایط کنونی باشد این است که به معنای واقعی کلمه همه روی زمین خواهند مرد".
 
او استدلال کرد که زنده ماندن از رویارویی با یک سیستم کامپیوتری که "نه برای ما و نه به طور کلی برای زندگی حساس" است به "دقت و آمادگی و بینش‌های علمی جدید" نیاز دارد که بشر در حال حاضر فاقد آن می‌باشد و بعید به نظر می‌رسد در آینده قابل پیش بینی نیز به آن دست یابد.
 
یودکووسکی هشدار داد: "یک هوش مصنوعی به اندازه کافی هوشمند برای مدت طولانی در رایانه محصور نخواهد شد". او توضیح داد که این واقعیت که امکان ارسال رشته‌های DNA به آزمایشگاه‌ها برای تولید پروتئین وجود دارد احتمالا به هوش مصنوعی این امکان را می‌دهد که اشکال حیات مصنوعی را بسازد یا مستقیما به سمت تولید مولکولی پسا بیولوژیکی حرکت کند و به جهان راه یابد.
 
به گفته این محقق یک مهلت نامعلوم و جهانی برای دوره‌های آموزشی اصلی جدید هوش مصنوعی باید فورا معرفی شود. او تاکید کرد: "هیچ استثنایی نمی‌تواند وجود داشته باشد از جمله برای دولت‌ها یا ارتش‌ها".
 
یودوفسکی تاکید کرده که قرارداد‌های بین‌المللی باید امضا شوند تا سقفی در مورد میزان قدرت محاسباتی که هر فردی ممکن است از آن در آموزش چنین سیستم‌هایی استفاده کند تعیین شود.
 
او در مقاله اشاره کرده که تهدید هوش مصنوعی به قدری زیاد است که باید "در دیپلماسی بین المللی به صراحت اعلام شود که جلوگیری از سناریو‌های انقراض توسط هوش مصنوعی اولویتی بالاتر از جلوگیری از تبادل کامل هسته‌ای است".

ببینید | چرا هوش مصنوعی ترسناک شده است؟!
هوش مصنوعی وسیله‌ای است برای رشد و پیشرفت، اما مثل همه فناوری‌های دیگر سکه‌ای است که روی دیگری هم دارد و می‌تواند بسیار خطرناک باشد.

به زودی درک هوش مصنوعی برای انسان غیرممکن خواهد شد

به زودی درک هوش مصنوعی برای انسان غیرممکن خواهد شد
وقتی صحبت از هوش مصنوعی قابل توضیح و شفاف به میان می‌آید داستان شبکه‌های عصبی به ما می‌گوید که احتمالا در آینده به جای نزدیک شدن از آن هدف دور خواهیم شد.
 "جک دی کُوان" ریاضیدان و زیست شناس نظری در سال ۱۹۵۶ میلادی در جریان یک سفر یک ساله به لندن و در اوایل دهه ۲۰ زندگی اش با "ویلفرد تیلور" ملاقات کرد و ماشین یادگیری تازه او را از نزدیک مشاهده نمود. او در بدو ورود از مشاهده "بانک عظیم ماشین یادگیری" که با آن مواجه شده بود گیج شد.

به گزارش فرارو به نقل از کانورسیشن؛ کوان تنها می‌توانست بایستد و ماشینی که خود در حال انجام کارش بود را تماشا کند کاری که به نظر می‌رسید انجام می‌داد اجرای یک "طرح حافظه انجمنی" بود به نظر می‌رسید که می‌توانست یاد بگیرد که چگونه اتصالات را پیدا کند و داده‌ها را مورد بازیابی قرار دهد.
شاید شبیه بلوک‌های مدار ناهمواری به نظر می‌رسید که با دست در انبوهی از سیم‌ها و جعبه‌ها به هم لحیم شده‌اند، اما چیزی که کوان شاهد آن بود یک شکل مشابه اولیه از یک شبکه عصبی به نظر می‌رسید یک پیشرو برای پیشرفته‌ترین هوش مصنوعی امروزی از جمله چت جی پی تی (Chat GPT) که به دلیل توانایی در تولید محتوای نوشتار در پاسخ به تقریبا هر دستوری بسیار مورد بحث قرار گرفته است. فناوری زیربنایی چت جی پی تی یک شبکه عصبی است.
 همان طور که کوان و تیلور ایستاده بودند و کار ماشین را تماشا می‌کردند واقعا نمی‌دانستند که چگونه این کار را انجام می‌دهد. پاسخ به مغز ماشین مرموز تیلور را می‌توان جایی در "نورون‌های آنالوگ" در ارتباط‌های ایجاد شده توسط حافظه دستگاه آن و مهم‌تر از همه در این واقعیت یافت که عملکرد خودکار آن را واقعا نمی‌توان به طور کامل توضیح داد. دهه‌ها به طول می‌انجامد تا این سیستم‌ها هدف خود را پیدا کنند و آن قدرت باز شود.
 
اصطلاح "شبکه عصبی" طیف گسترده‌ای از سیستم‌ها را در بر می‌گیرد، اما به طور مرکزی به گفته IBM این شبکه‌های عصبی هم چنین به عنوان شبکه‌های عصبی مصنوعی (ANN) یا شبکه‌های عصبی شبیه سازی شده (SNN) شناخته می‌شوند که زیرمجموعه‌ای از یادگیری ماشین هستند و در قلب الگوریتم‌های یادگیری عمیق قرار دارند. مهم این است که خود این اصطلاح و شکل و ساختار آن از مغز انسان الهام گرفته شده و از روشی که نورون‌های بیولوژیکی به یکدیگر سیگنال می‌دهند تقلید می‌کند.
 
ممکن است در مراحل اولیه شک و تردیدی در مورد ارزش آن وجود داشته باشد، اما با گذشت سال‌ها مُدهای هوش مصنوعی به شدت به سمت شبکه‌های عصبی حرکت کرده اند. اکنون اغلب تصور می‌شود که آن‌ها آینده هوش مصنوعی هستند. آن‌ها پیامد‌های بزرگی برای ما و معنای انسان بودن دارند. ما اخیرا پژواک این نگرانی‌ها را شنیده‌ایم و درخواست‌هایی به منظور توقف توسعه‌های جدید هوش مصنوعی برای یک دوره شش ماهه به منظور کسب اطمینان از پیامد‌های آن مطرح شده اند.
 
مطمئنا اشتباه است که شبکه عصبی را صرفا به عنوان ابزار‌های جدید براق و چشم نواز رد کنیم. آنان در حال حاضر به خوبی در زندگی ما جا افتاده‌اند. برخی در عملی بودن خود قدرتمند هستند. اطلاعیه اخیر مایکروسافت مبنی بر آن که جستجو‌های موتور جستجوی بینگ با مجهز شدن به هوش مصنوعی تقویت می‌شود و این که آن را به کمک خلبانی برای وب تبدیل می‌کند نشان می‌دهد که چگونه چیز‌هایی که ما کشف کرده و درک می‌کنیم محصول این نوع اتوماسیون (خودکاری شدن) هستند.
 
هوش مصنوعی با استفاده از داده‌های گسترده برای یافتن الگو‌ها می‌تواند به طور مشابه برای انجام کار‌هایی مانند تشخیص تصویر با سرعت آموزش داده شود. برای مثال، آن را در تشخیص چهره ادغام می‌کند. این توانایی در شناسایی الگو‌ها منجر به کاربرد‌های بسیار دیگری مانند پیش بینی بازار‌های سهام شده است.
 
شبکه‌های عصبی نحوه تفسیر و ارتباط ما را نیز تغییر می‌دهند. گوگل ترنسلیت (مترجم گوگل ) که توسط تیم مغز گوگل توسعه یافته است یکی دیگر از برنامه‌های برجسته شبکه عصبی است.
 
لایه‌های مرموز "ناشناختنی"
نگاهی به تاریخچه شبکه‌های عصبی به ما نکته مهمی در مورد تصمیمات خودکاری که زمانه فعلی ما را تعریف می‌کنند یا تصمیماتی که احتمالا تاثیر عمیق تری در آینده خواهند داشت را می‌گویند. حضور آن‌ها هم چنین می‌گوید که ما احتمالا تصمیمات و تاثیرات هوش مصنوعی را در طول زمان حتی کمتر درک می‌کنیم. این سیستم‌ها صرفا جعبه‌های سیاه نیستند آن صرفا قطعات مخفی یک سیستم نیستند که قابل مشاهده یا درک نباشند.
 این چیزی متفاوت است چیزی که ریشه در اهداف و طراحی خود این سیستم‌ها دارد. یک تعقیب طولانی مدت وجود دارد. هرچه غیر شفاف‌تر باشد سیستم معتبرتر و پیشرفته‌تر تصور می‌شود. این صرفا در مورد پیچیده‌تر شدن سیستم‌ها یا محدود کردن دسترسی به کنترل مالکیت معنوی نیست (اگرچه این موارد بخشی از آن هستند). در عوض، می‌توان گفت اخلاقی که آن‌ها را هدایت می‌کند علاقه‌ای خاص و نهفته به "ناشناخته ماندن" دارد.
 این رمز و راز حتی در قالب و گفتمان شبکه عصبی رمزگذاری شده است. آن‌ها دارای لایه‌های عمیق انباشته شده هستند از این رو عبارت یادگیری عمیق و در درون آن اعماق "لایه‌های پنهان" حتی اسرارآمیزتر هستند. اسرار این سیستم‌ها در اعماق زیر سطح قرار دارند.
 
این احتمال وجود دارد که هر چه تاثیر هوش مصنوعی در زندگی ما بیش‌تر باشد کمتر متوجه چگونگی و چرایی آن شویم. امروزه فشاری قوی برای قابل توضیح شدن هوش مصنوعی وجود دارد. ما می‌خواهیم بدانیم هوش مصنوعی چگونه کار می‌کند و چگونه به تصمیمات و نتایج می‌رسد.
 
اتحادیه اروپا به قدری نگران "خطرات غیرقابل قبول" و حتی برنامه‌های کاربردی "خطرناک" است که در حال حاضر در حال پیشبرد قانون جدید هوش مصنوعی با هدف تعیین "استاندارد جهانی" برای "توسعه هوش مصنوعی ایمن، قابل اعتماد و اخلاقی" می‌باشد. اتحادیه اروپا در این باره نگرانی دارد که سیستم‌هایی که در آینده ظهور می‌کنند پیامد‌هایی برای حقوق بشر داشته باشند.
 
این بخشی از فراخوان‌های گسترده‌تر برای شفافیت در حوزه هوش مصنوعی است تا بتوان فعالیت‌های آن را بررسی، ممیزی و ارزیابی کرد. مثال دیگر، جلسه توجیهی انجمن سلطنتی بریتانیا در مورد هوش مصنوعی قابل توضیح است که در آن اشاره شده که "مناظره‌های مرتبط با سیاستگذاری در سراسر جهان به طور فزاینده‌ای نیاز به نوعی توضیح پذیری هوش مصنوعی دارند".
 با این وجود، داستان شبکه‌های عصبی به ما می‌گوید که احتمالا در آینده به جای نزدیک‌تر شدن از آن هدف دورتر خواهیم شد.
 
با الهام از مغز انسان
 این شبکه‌های عصبی ممکن است سیستم‌های پیچیده‌ای باشند، اما برخی از اصول اصلی را دارند. آن‌ها با الهام از مغز انسان به دنبال کپی یا شبیه سازی اشکال تفکر بیولوژیکی و انسانی هستند. از نظر ساختار و طراحی همانطور که IBM نیز توضیح می‌دهد از "لایه‌های گره، حاوی یک لایه ورودی، یک یا چند لایه پنهان و یک لایه خروجی" تشکیل شده اند و هرگره یا نورون مصنوعی به گره یا نورون مصنوعی دیگری متصل می‌شود. از آنجایی که آن‌ها برای ایجاد خروجی‌ها به ورودی‌ها و اطلاعات نیاز دارند "به داده‌های آموزشی برای یادگیری و بهبود دقت خود در طول زمان متکی هستند".
 این جزئیات فنی مهم هستند، اما تمایل به مدل سازی این سیستم‌ها بر اساس پیچیدگی‌های مغز انسان نیز اهمیت دارد. درک جاه طلبی پشت این سیستم‌ها برای درک آن چه که این جزئیات فنی به همراه دارند حیاتی می‌باشد.
 
"تئو کوهونن" دانشمند شبکه عصبی در مصاحبه‌ای در سال ۱۹۹۳ میلادی به این نتیجه رسیده بود که یک سیستم "خودسازمانده" "رویای من است" که "چیزی شبیه به آن چه که سیستم عصبی ما به طور غریزی انجام می‌دهد" خواهد بود. برای مثال کوهونن این تصور را مطرح کرد که چگونه یک سیستم "خودسازماندهی" سیستمی که خود را نظارت و مدیریت می‌کند "می تواند به عنوان یک تابلوی نظارت برای هر ماشینی در هر هواپیما یا هر نیروگاه هسته‌ای استفاده شود". او فکر می‌کرد که این بدان معناست که در آینده "شما می‌توانید بلافاصله ببینید که سیستم در چه شرایطی قرار دارد".
 
هدف اصلی این بود که سیستمی داشته باشیم که بتواند با محیط اطراف خود سازگار شود. آن رویا این بود که سیستم‌هایی بتوانند بدون نیاز به دخالت زیاد انسان خود را مدیریت کنند و این که پیچیدگی‌ها و ناشناخته‌های مغز سیستم عصبی و دنیای واقعی به زودی به توسعه و طراحی شبکه‌های عصبی می‌رسند.
 
چیزی عجیب در مورد آن با این وجود، با بازگشت به سال ۱۹۵۶ میلادی و آن ماشین یادگیری عجیب این رویکرد عملی که تیلور هنگام ساخت آن اتخاذ کرده بود بلافاصله توجه کوان را به خود جلب کرد. کوان در مصاحبه‌ای گفت که تیلور کار را براساس تئوری و روی رایانه انجام نداده در عوض با استفاده از ابزار‌هایی که در دست داشته در واقع با استفاده از سخت افزار کار را انجام داده بود. این یک چیز مادی بود ترکیبی از قطعات شاید حتی یک ابزار. کوان خاطرنشان می‌کند که "همه کار‌ها با مدار‌های آنالوگ انجام شد چندین سال به طول انجامید تا تیلور آن را بسازد و با آن بازی کند". در واقع، یک مورد آزمون و خطا بود. قابل درک است که کوان می‌خواست با آن چه می‌دید کنار بیاید.
 
او سعی کرد از تیلور بخواهد که این ماشین یادگیری را برایش توضیح دهد. با این وجود، شفاف سازی‌ای صورت نگرفت و کوان نتوانست تیلور را وادار به توضیح درباره چگونگی کار کند. نورون‌های آنالوگ یک راز باقی ماندند. کوان فکر کرد مشکل شگفت انگیزتر این بود که تیلور "واقعا خود نمی‌دانست که چه اتفاقی در حال رخ دادن است".
 
در مصاحبه‌ای در اواسط دهه ۱۹۹۰ میلادی کوان با فکر کردن به ماشین تیلور فاش ساخت که شما نمی‌توانید کاملا بفهمید که چگونه کار می‌کند. این نتیجه گیری نشان می‌دهد که چگونه ناشناخته‌ها عمیقا در شبکه‌های عصبی جاسازی شده است. غیر قابل توضیح بودن این سیستم‌های عصبی حتی از مراحل اساسی و رشدی که قدمت آن به حدود هفت دهه قبل می‌رسد نیز وجود داشته و این رمز و راز امروزه باقی مانده است و می‌توان آن را در اشکال پیشرفته هوش مصنوعی یافت. غیرقابل درک بودن عملکرد تداعی‌های ایجاد شده توسط دستگاه تیلور کوان را به این فکر واداشت که آیا چیزی در مورد آن وجود دارد؟
 
تقلید از مغز لایه به لایه
 شاید پیش‌تر متوجه شده باشید که هنگام بحث در مورد منشاء شبکه‌های عصبی تصویر مغز و پیچیدگی‌هایی که این شبکه‌ها برمی انگیزد هرگز دور از دسترس نیست. مغز انسان به عنوان نوعی الگو برای این سیستم‌ها عمل می‌کند. در مراحل اولیه به ویژه مغز هنوز یکی از ناشناخته‌های بزرگ و الگویی برای نحوه عملکرد شبکه عصبی شد.
 
بنابراین، سیستم‌های آزمایشی جدید بر اساس چیزی که عملکرد آن تا حد زیادی ناشناخته بود مدل‌سازی شدند. "کارور مید" مهندس محاسبات عصبی به طرز آشکاری از مفهوم "کوه یخ شناختی" که برای او جذابیت خاصی پیدا کرده بود صحبت کرده است. این تنها نوک کوه یخ آگاهی است که ما از آن آگاه هستیم و قابل مشاهده است. مقیاس و شکل بقیه بخش‌های کوه یخی در زیر سطح ناشناخته‌ای باقی مانده اند.
 
"جیمز اندرسون" که برای مدتی روی شبکه‌های عصبی کار می‌کرد در سال ۱۹۹۸ میلادی خاطرنشان ساخت که وقتی نوبت به تحقیق روی مغز می‌شود "به نظر می‌رسد کشف اصلی ما آگاهی از این است که واقعا نمی‌دانیم چه اتفاقی رخ می‌دهد".
 
"ریچارد واترز" روزنامه نگار حوزه فناوری در گزارش مفصلی در "فایننشال تایمز" در سال ۲۰۱۸ میلادی اشاره کرد که چگونه شبکه‌های عصبی "بر اساس نظریه‌ای درباره نحوه عملکرد مغز انسان مدل سازی می‌شوند و داده‌ها را از لایه‌هایی از نورون‌های مصنوعی منتقل می‌کنند تا زمانی که یک الگوی قابل شناسایی ظاهر شود".
 
واترز پیشنهاد کرد که این مشکلی را ایجاد می‌کند، زیرا برخلاف مدار‌های منطقی به کار رفته در یک برنامه نرم افزاری سنتی هیچ راهی برای ردیابی این فرآیند برای شناسایی دقیق این که چرا یک رایانه به یک پاسخ خاص می‌رسد وجود ندارد. نتیجه گیری واترز آن است که این نتایج را نمی‌توان حذف کرد. استفاده از این نوع مدل از مغز که داده‌ها را از لایه‌های زیادی می‌گیرد به این معنی است که پاسخ به راحتی قابل ردیابی نیست. چند لایه بودن بخش خوبی از دلیل این امر است.
 
اقتباس کل بازی است
 راز عمیق‌تر می‌شود. همان طور که لایه‌های شبکه‌های عصبی انباشته شده‌اند پیچیدگی آن‌ها افزایش یافته است. هم‌چنین منجر به رشد لایه‌های پنهان در این اعماق شده است. بحث در مورد تعداد بهینه لایه‌های پنهان در یک شبکه عصبی ادامه دارد.
 
به دلیل نحوه عملکرد یک شبکه عصبی عمیق با تکیه بر لایه‌های عصبی پنهان که بین اولین لایه نورون‌ها (لایه ورودی) و آخرین لایه (لایه خروجی) قرار گرفته اند تکنیک‌های یادگیری عمیق هستند و حتی برای برنامه نویسانی که در ابتدا آن‌ها را تنظیم کرده اند اغلب مبهم یا ناخوانا هستند.
 
"کاترین هیلز" متفکر برجسته و میان رشته‌ای رسانه‌های نوین با بیان نکته‌ای مشابه خاطرنشان کرد که محدودیت‌هایی برای "تا چه اندازه می‌توانیم درباره سیستم بدانیم"؟ وجود دارد نتیجه‌ای که مربوط به "لایه پنهان" در شبکه عصبی و الگوریتم‌های یادگیری عمیق است.
 
به دنبال چیز‌های غیرقابل توضیح روی هم رفته این تحولات طولانی بخشی از چیزی است که "تاینا بوچر" جامعه شناس فناوری آن را "مشکل ناشناخته" نامیده است.
 
"هری کالینز" با گسترش تحقیقات تاثیرگذار خود در مورد دانش علمی در زمینه هوش مصنوعی اشاره کرده که هدف شبکه‌های عصبی این است که احتمالا در ابتدا توسط یک انسان تولید می‌شوند، اما به محض اینکه برنامه نوشته شود زندگی خود را می‌کنند و نحوه عملکرد برنامه دقیقا می‌تواند مرموز باقی بماند. این وضعیت بازتاب آن رویا‌های دیرینه در مورد یک سیستم خودسازمانده است.
 
این احتمال وجود دارد که هر چه تاثیر هوش مصنوعی در زندگی مان بیش‌تر شود کمتر متوجه چگونگی و چرایی آن شویم. با این وجود، بیان این موضوع در روزگار کنونی خوشایند نیست. ما می‌خواهیم بدانیم هوش مصنوعی چگونه کار می‌کند و چگونه به تصمیمات و نتایجی که بر ما تاثیر می‌گذارد می‌رسد.
 
همان‌طور که پیشرفت‌های هوش مصنوعی به شکل گیری دانش و درک ما از جهان، آن چه کشف می‌کنیم، نحوه رفتار با ما، نحوه یادگیری، مصرف و تعامل ما، ادامه می‌دهد، انگیزه برای درک آن بیش‌تر می‌شود. وقتی صحبت از هوش مصنوعی قابل توضیح و شفاف به میان می‌آید داستان شبکه‌های عصبی به ما می‌گوید که احتمالا در آینده به جای نزدیک شدن از آن هدف دور خواهیم شد.


پژوهشهایی درباره ی روند پیری و مواد کارگر بر آن

ترکیبی‌که می‌تواند عامل کند‌شدن روند‌پیری باشد

ترکیبی‌که می‌تواند عامل کند‌شدن روند‌پیری باشد
گروه علمی: پیری چالش مهمی برای همه جوامع است. با توجه به اینکه جمعیت جهان به سرعت در حال پیر شدن است، برخی احتمال می‌دهند تا سال ۲۰۵۰ برای اولین بار بر روی کره زمین، تعداد افراد مسن به اندازه تعداد کودکان زیر ۱۵ سال باشد. در این صورت، پیش‌بینی می‌شود بار اقتصادی و بهداشتی که بیماری‌های مرتبط با افزایش سن به جوامع تحمیل می‌کنند، در چند دهه آینده افزایش یابد.
به گزارش ایسنا، با وجود این، براساس پژوهش‌هایی که در سال گذشته انجام شد، امکان دارد کند کردن روند پیری در آینده محقق شود. پژوهشگران با بررسی‌های خود در مورد پیری بدن، ادعا می‌کنند که شاید کُند کردن روند پیری در آینده ممکن شود.
 
دانشمندان «مدرسه پزشکی هاروارد» (HMS) به بررسی دلیل پیری پرداخته‌اند و یک راه ممکن را برای معکوس کردن آن شناسایی کرده‌اند. آن‌ها در آزمایش‌هایی که روی موش‌ها انجام شد، نشان دادند که مشکلات رخ داده در اپی‌ژنتیک، علائم پیری را تحریک می‌کنند و راه‌اندازی مجدد می‌تواند آن‌ها را معکوس کند و شاید طول عمر را افزایش دهد.
ژنوم ما شامل نقشه کاملی از DNA است که در تک‌تک سلول‌های بدن ما یافت می‌شود، اما این تصویر کامل نیست، بلکه یک لایه اطلاعات اضافی به نام اپی‌ژنوم، بالای آن قرار دارد و کنترل می‌کند که کدام ژن در انواع گوناگون سلول‌ها روشن و خاموش شود.

گویی همه سلول‌های بدن ما براساس یک دفتر راهنمای عملیاتی کار می‌کنند که همان ژنوم است، اما اپی‌ژنوم مانند فهرستی از مطالب است که سلول‌های گوناگون را به فصل‌های مختلفی هدایت می‌کند که همان ژن‌ها هستند. از این گذشته، سلول‌های ریه به دستورالعمل‌هایی نیاز دارند که بسیار متفاوت با سلول‌های قلب هستند.

عوامل محیطی و سبک زندگی مانند رژیم غذایی، ورزش و حتی تجربیات دوران کودکی می‌توانند بیان اپی‌ژنتیک را در طول زندگی ما تغییر دهند. تغییرات اپی‌ژنتیکی با سرعت پیری بیولوژیکی مرتبط هستند، اما اینکه آیا آن‌ها علائم پیری را نشان می‌دهند یا خود یک علامت هستند، هنوز مشخص نبود. پژوهشگران در این پروژه، آزمایش‌هایی را روی موش‌ها انجام دادند تا پاسخ را متوجه شوند.

آن‌ها با استفاده از سیستمی به نام «تغییرات القایی در اپی‌ژنوم» (ICE)، روند طبیعی آسیب و ترمیم DNA را در موش‌ها سرعت بخشیدند تا بررسی کنند که آیا این کار باعث تسریع علائم پیری می‌شود یا خیر.در سلول‌های پستانداران، کروموزوم‌ها در هر دقیقه یک میلیون شکست DNA را پشت سر می‌گذارند و عوامل اپی‌ژنتیکی پیش از بازگشت به مکان‌های اصلی خود، ترمیم‌ها را به سرعت هماهنگ می‌کنند. این گروه پژوهشی، موش‌هایی را مهندسی کردند که شکست DNA را با سرعتی سه برابر سریع‌تر از اندازه معمول پشت سر می‌گذاشتند.

پژوهشگران با گذشت زمان دریافتند که عوامل اپی‌ژنتیک بیشتر آشفته می‌شوند و پس از ترمیم شکستگی‌های DNA به خانه برنمی‌گردند. این کار به درهم‌ریختگی اپی‌ژنوم منجر می‌شود. موش‌ها در شش ماهگی، علائم فیزیکی پیری را نشان دادند و به نظر می‌رسید که وضعیت سلامتی بسیار بدتری در مقایسه با موش‌های هم سن و سال ویرایش‌نشده دارند.

آزمایش یک درمان احتمالی برای معکوس کردن روند پیری
پژوهشگران می‌گویند که با این پژوهش، نقش اپی‌ژنوم در پیری را تایید کرده‌اند. گام بعدی آزمایش این بود که آیا می‌توان کاری را در مورد این مشکل انجام داد یا خیر. پژوهشگران، یک ترکیب ژن‌درمانی از سه ژن به نام‌های «Oct ۴»، «Sox ۲» و «Klf ۴» را آزمایش کردند. این ژن‌ها در سلول‌های بنیادی فعال هستند و پژوهشگران در پژوهش پیشین خود دریافتند که می‌توان از آن‌ها برای بازگرداندن بینایی به موش‌های مبتلا به آب‌سیاه مرتبط با افزایش سن استفاده کرد.

در این مورد، موش‌های ICE کاهش چشمگیری را در نشانگر‌های زیستی پیری تجربه کردند. اپی‌ژنوم آن‌ها از هم گسیخته شد و بافت‌ها و اندام‌های آن‌ها را به حالت جوانی برگرداند. «دیوید سینکلر» (David Sinclair)، پژوهشگر ارشد این پروژه گفت: این کار مانند راه‌اندازی مجدد یک رایانه خراب است و یک برنامه اپی‌ژنتیکی را راه انداخت که سلول‌ها را به بازیابی اطلاعات اپی‌ژنتیکی که در جوانی داشتند، هدایت کرد. این کار، یک تنظیم مجدد دائمی است.

پژوهشگران باور دارند که این کشف بسیار بزرگ است. به واسطه مقابله با پیری، بسیاری از بیماری‌های ناشی از این فرآیند طبیعی را می‌توان به طور مؤثرتری درمان کرد. سینکلر در یک توییت نوشت: اگر نتیجه به دست آمده درست باشد، بدان معناست که سرطان، دیابت و آلزایمر ممکن است همان علت زمینه‌ای را داشته باشند. بدین ترتیب، می‌توان علت را برای درمان بیماری‌های مرتبط با افزایش سن معکوس کرد.

اگرچه هنوز تحقیقات زیادی وجود دارند که باید پیش از تحقق چنین اهداف والایی انجام شوند، اما پژوهش در حال انجام شدن است. یک مقاله پیش‌چاپ که هنوز مورد بررسی قرار نگرفته است، همان ترکیب ژن‌درمانی را روی موش‌های مسن به کار گرفت که در سنی معادل ۷۷ سال در انسان هستند. این موش‌ها ۹ درصد بیشتر از موش‌های درمان‌نشده عمر کردند.

ترکیبی که می‌تواند عامل کند شدن روند پیری باشد
پژوهشگران «دانشگاه متروپولیتن توکیو» در بررسی جدید خود، اثر قابل توجه یک ترکیب خاص را در کند کردن روند کاهش عضله مرتبط با پیری نشان داده‌اند. پژوهشگران نشان داده‌اند که ترکیبی از «آمینولولینیک-۵ اسید» (۵-ALA) هیدروکلرید و «سدیم فروس سیترات» (SFC)، روند کاهش عضله مرتبط با پیری را در مگس‌های میوه کند می‌کند و به آهسته‌تر شدن روند کاهش فعالیت حرکتی و طول عمر بیشتر منجر می‌شود. این ترکیب در آزمایش‌ها، با حفظ بهتر ساختار عضلانی و عملکرد میتوکندری مرتبط بود. این پژوهش، نخستین نمونه از نوع خود در حیوانات است و امکان دارد به ارائه گزینه‌های درمانی در جهت کند کردن پیری عضلات کمک کند.

عضلات سالم برای داشتن یک زندگی سالم حیاتی هستند، اما برای همیشه دوام ندارند. ضعف ناشی از افزایش سن می‌تواند به بروز مشکلاتی مانند راه رفتن آهسته‌تر، کاهش قدرت، افزایش زمین خوردن و آسیب دیدن منجر شود که برخی از آن‌ها ممکن است کشنده باشند. بخش مهمی از کاهش عضلانی مرتبط با افزایش سن، به دلیل کاهش عملکرد میتوکندری است. میتوکندری، کارخانه تولید یک ماده شیمیایی بسیار مهم موسوم به «آدنوزین‌تری فسفات» (adenosine triphosphate) محسوب می‌شود که منبع ضروری انرژی شیمیایی برای انواع فرآیند‌های بیوشیمیایی است. در هر حال، مکانیسم دقیق برخورد پیری با میتوکندری هنوز به طور کامل شناخته نشده است.

دانشمندان در پژوهش‌های مهمی که طی دهه گذشته انجام دادند، دریافتند که پوسیدگی میتوکندری در سلول‌های کشت شده را می‌توان با افزودن ترکیبی از دو ماده شیمیایی ۵-ALA و SFC کاهش داد. ۵-ALA در بیوشیمی به عنوان نقطه آغاز چرخه پورفیرین شناخته شده است که به تولید «هِم» (Heme) منجر شود. هِم، یک ترکیب کلیدی پیش‌ساز هموگلوبین است؛ مولکولی که مسئولیت حمل اکسیژن در بدن را بر عهده دارد.
 
این گروه پژوهشی به سرپرستی «کانای آندو» (Kanae Ando)، دانشیار دانشگاه متروپولیتن توکیو، این فرضیه را مطرح کردند که ترکیب ۵-ALA/SFC می‌تواند در یک محیط درمانی برای کمک به کند کردن روند زوال عضلانی مرتبط با افزایش سن استفاده شود. آن‌ها در این پژوهش نشان داده‌اند که این ترکیب می‌تواند بر سلامت عضلانی «مگس سرکه» یا «دروزوفیلا» (Drosophila) تأثیر بگذارد. آن‌ها از طریق مخلوط کردن مواد شیمیایی با غذای مگس دریافتند مگس‌هایی که با این ترکیب تغذیه می‌شوند، به مرور زمان کاهش کمتری را در عملکرد حرکتی نشان می‌دهند و طول عمر بیشتری دارند.
پژوهشگران با نگاه کردن به عضلات مگس‌ها زیر میکروسکوپ دریافتند که ساختار میوفیبر‌هایی که بافت عضلانی مگس‌های مسن‌تر را تشکیل می‌دهند، بیشتر به بافت عضلانی مگس‌های جوان‌تر شبیه است.مهم‌تر از همه اینکه پژوهشگران با بررسی نحوه تأثیر این ترکیب بر عملکرد میتوکندری دریافتند که لزوما فعالیت یا پویایی مگس‌ها نیست که مستقیماً تحت تأثیر قرار می‌گیرد؛ بلکه پتانسیل الکتریکی در سراسر غشایی است که به طور فیزیکی اطراف میتوکندری وجود دارد. مشخص شد که این پتانسیل الکتریکی مستقیما با تولید گونه‌های اکسیداتیو فعال مرتبط است که می‌توانند به بافت عضلانی آسیب برسانند.

به طور شگفت‌انگیزی مشخص شد که ۵-ALA/SFC، یک مکمل غذایی متداول برای حفظ سلامتی است. یافته‌های این گروه پژوهشی نه تنها یک مکانیسم کلیدی را نشان می‌دهد که زیربنای آغاز پیری و شکنندگی است، بلکه یک گزینه درمانی را نیز ارائه می‌دهد که به کند کردن روند کاهش عضلانی مرتبط با افزایش سن کمک می‌کند.

کند کردن روند پیری سلول با کمک اکسیدکننده‌ها
محققان «دانشگاه فناوری چالمرز» سوئد در مطالعه اخیرشان اظهار کرده‌اند اکسیدکننده‌ها می‌توانند روند پیری سلول را کند کنند. اکسید کننده‌ها (Oxidants) همانند گونه‌های اکسیژن واکنش پذیر، می‌توانند به سلول‌های موجودات زنده آسیب برسانند و با پیری مرتبط هستند.

اما مطالعه اخیر دانشمندان سوئدی نشان داده است که سطح پایین اکسید کننده هیدروژن پراکسید یا آب‌اکسیژنه می‌تواند آنزیمی را تحریک کند که روند پیری سلول‌های مخمر را کند می‌کند. آنتی اکسیدان‌ها با وجود اکسید کننده‌های خنثی کننده ممکن است با مولکول‌های اساسی بدن واکنش نشان دهند و عملکرد‌های بیولوژیکی آن‌ها را مختل کنند.

مقادیر زیادی اکسید کننده می‌تواند باعث آسیب شدید به دی. ان.‌ای به ویژه غشای سلول و پروتئین‌ها شود؛ بنابراین سلول‌های ما مکانیسم‌های دفاعی قدرتمندی برای خلاص شدن از شر این اکسید کننده‌ها ایجاد کرده‌اند. پیش از این، تنها بُعد آسیب‌زا و مضر اکسید کننده‌ها شناخته شده بود، اما اکنون دانشمندان شروع به درک عملکرد‌های مثبت اکسید کننده‌ها نیز کرده‌اند.در یک مطالعه جدید، دانشمندان نشان دادند که اکسید کننده هیدروژن پراکسید یا آب‌اکسیژنه می‌تواند روند پیری سلول‌های مخمر را کاهش دهد. طی این مطالعه دانمشندان آنزیم «Tsa ۱» را که بخشی از یک گروه آنتی اکسیدان به نام پروکسی‌ردوکسین است، مورد بررسی قرار دادند.
 
پروکسی‌ردوکسین‌ها آنزیم‌های مهارکننده هیدروژن پراکسید یا آب‌اکسیژنه هستند که کار سیگنال دهی و شپرون هیدروژن پراکسید یا آب‌اکسیژنه را نیز انجام می‌دهند. در مخمر، مقدار زیادی سیتوزول پروکسی‌ردوکسین «Tsa ۱» برای مقاومت در برابر هیدروژن پراکسید و افزایش طول عمر با محدودیت کالری، مورد نیاز است. شپرون (Chaperone) پروتئینی است که به تاخوردگی دیگر پروتئین‌ها کمک می‌کند.
«میکائیل مولین» (Mikael Molin) رهبر گروه تحقیقاتی دانشکده زیست‌شناسی و مهندسی زیست‌شناسی دانشگاه چالمرز گفت: مطالعات قبلی بر روی این آنزیم‌ها نشان داده است که آن‌ها در دفاع سلول‌های مخمری در برابر اکسید کننده‌های مضر شرکت می‌کنند. اما پراکسیروکسین‌ها همچنین در صورت محدود شدن کالری به سلول‌ها کمک می‌کنند تا طول عمر آن‌ها افزایش یابد.

سازوکار‌های موجود در پس این عملکرد‌ها هنوز به طور کامل درک نشده‌اند. محققان همچنین نشان داده‌اند که تحریک فعالیت پروکسی‌ردوکسین سرعت پیری سلول در موجوداتی مانند مخمر، مگس و کرم به ویژه هنگامی که آن‌ها کالری کمتر از حد طبیعی از طریق غذای خود دریافت می‌کنند را کاهش می‌دهد.

«سسیلیا پیکازو» (Cecilia Picazo)، محقق مقطع فوق دکترا این مطالعه گفت: اکنون ما عملکرد جدیدی از Tsa ۱ پیدا کرده‌ایم. پیش از این، ما فکر می‌کردیم که این آنزیم، گونه‌های واکنش اکسیژن را خنثی می‌کند. اما اکنون ما نشان دادیم که Tsa ۱ برای مشارکت در روند کاهش سرعت پیری سلول‌های مخمر، با مقدار مشخصی از هیدروژن پراکسید تحریک می‌شود.

دانشمندان اکنون به درک مکانیسم‌هایی که چگونه اکسید کننده‌ها می‌توانند روند پیری را کند کنند نزدیک شده‌اند که این موضوع می‌تواند به انجام مطالعات بیشتری در زمینه توسعه دارو‌های محرک پروکسی‌ردوکسین و آزمایش اینکه آیا بیماری‌های مرتبط با افزایش سن توسط دارو‌های دیگری که اثرات مثبت اکسیدکننده‌ها را در بدن افزایش می‌دهند، کاهش می‌یابند یا خیر، منجر شود.

آنزیم ضد پیری
محققان «کالج دانشگاهی لندن» (UCL)، «دانشگاه کنت» (UKC) و «دانشگاه خرونینگن» (UG)، دریافتند مهار یک آنزیم که در همه پستانداران رایج است، پتانسیل ضدپیری دارد و می‌تواند طول عمر را افزایش دهد. آن‌ها با مهار این آنزیم در بدن مگس‌ها و کرم‌ها توانستند طول عمر آن‌ها را افزایش دهند. این آنزیم در انواع پستانداران از جمله انسان‌ها نیز وجود دارد.

«Pol lll» آنزیمی است که برای رشد سلول‌ها ضروری است و تقریبا در تمام سلول‌ها در میان تمام پستانداران وجود دارد. پس از آنکه داروی مهارکننده ایمنی تحت عنوان «راپامایسین» شناخته شده برای مهار «Pol lll»، طول عمر چندین مدل حیوانی از جمله موش‌ها را افزایش داد، پژوهشگران، بررسی نقش این آنزیم در پیری را آغاز کرده‌اند.

ارزیابیهایی درباره برخی پیآوردهای هوش مصنوعی برای انسانها

پیش‌بینی بانک آمریکایی: هوش مصنوعی روی ۳۰۰ میلیون شغل اثر می‌گذارد
گلدمن ساکس، شرکت سرمایه‌گذاری آمریکایی، در یادداشتی تحلیلی از احتمال اثرگذاری هوش مصنوعی بر ۳۰۰ میلیون شغل خبر داده است.

گلدمن ساکس، شرکت سرمایه‌گذاری آمریکایی، در یادداشتی تحلیلی از احتمال اثرگذاری هوش مصنوعی بر ۳۰۰ میلیون شغل خبر داده است. مدیران گلدمن ساکس در یادداشتی خطاب‌به سرمایه‌گذاران نوشته‌اند اگر وعده‌های مربوط‌به هوش مصنوعی مولد رنگ حقیقت به خود بگیرند، «اختلال قابل‌توجه» در بازار نیروی کار رخ خواهد داد. به گفته‌ی گلدمن ساکس، دو‌سوم از شغل‌های آمریکا در معرض تأثیرپذیری از سیستم‌های خودکار مبتنی‌بر هوش مصنوعی هستند و وظایف کاری بالغ‌بر ۵۰ درصد از این شغل‌ها را می‌توان با هوش مصنوعی جایگزین کرد.

گلدمن ساکس، شرکت سرمایه‌گذاری آمریکایی، در یادداشتی تحلیلی از احتمال اثرگذاری هوش مصنوعی بر ۳۰۰ میلیون شغل خبر داده است.

پیشرفت‌های اخیر در حوزه‌ی هوش مصنوعی باعث شده مردم نگران امنیت شغلی خود شوند و آن‌طور که به‌نظر می‌رسد، این نگرانی کاملا درست است. گلدمن ساکس، شرکت سرمایه‌گذاری بزرگ آمریکایی، در گزارشی جدید گفته است که فناوری هوش مصنوعی مولد بالغ‌بر ۳۰۰ میلیون شغل را تحت تأثیر قرار می‌دهد.

مدیران گلدمن ساکس در یادداشتی خطاب‌به سرمایه‌گذاران نوشته‌اند اگر وعده‌های مربوط‌به هوش مصنوعی مولد رنگ حقیقت به خود بگیرند، «اختلال قابل‌توجه» در بازار نیروی کار رخ خواهد داد. به گفته‌ی گلدمن ساکس، دو‌سوم از شغل‌های آمریکا در معرض تأثیرپذیری از سیستم‌های خودکار مبتنی‌بر هوش مصنوعی هستند و وظایف کاری بالغ‌بر ۵۰ درصد از این شغل‌ها را می‌توان با هوش مصنوعی جایگزین کرد.

تحلیلگران معتقدند با وجود آثار گسترده‌ی هوش مصنوعی بر بازار نیروی کار، اکثر شغل‌ها و صنایع تا حدی در معرض اتوماسیون قرار می‌گیرند، به‌همین‌دلیل پیش‌بینی می‌شود که هوش مصنوعی به‌جای جایگزینی، مکمل آن‌ها شود.

ممکن است در نهایت هفت درصد از شغل‌های آمریکا به‌طور کامل با هوش مصنوعی جایگزین شوند، ۶۳ درصد از هوش مصنوعی به‌عنوان مکمل بهره بگیرند و ۳۰ درصد از هوش مصنوعی متأثر نشوند.

گلدمن ساکس می‌گوید هوش مصنوعی مولد که توانایی تولید انواع محتوا را دارد، نمایانگر «پیشرفتی عظیم با آثار احتمالا بزرگ بر اقتصاد کلان» است. استفاده‌ی گسترده از هوش مصنوعی ممکن است ارزش نهایی کالاها و خدمات سراسر دنیا را در ۱۰ سال آینده به‌میزان هفت درصد افزایش دهد.

فناوری هوش مصنوعی مولد از زمان انتشار عمومی ChatGPT در اواخر سال گذشته‌ی میلادی، به‌شدت در معرض توجه قرار گرفته است. ChatGPT چت‌باتی قدرتمند است که می‌تواند متن و شعر و کد بنویسد. مایکروسافت از فناوری استفاده‌شده در ChatGPT برای تقویت برخی از سرویس‌هایش نظیر موتور جست‌وجوی بینگ استفاده کرده است.

رشد انفجاری ChatGPT باعث شده است شماری از بزرگ‌ترین شرکت‌های حوزه‌ی فناوری سرمایه‌گذاری سنگینی در این حوزه انجام دهند. مایکروسافت ۱۰ میلیارد دلار در شرکت خالق ChatGPT سرمایه‌گذاری کرد و گوگل پروژه‌های هوش مصنوعی را در بالاترین اولویت قرار داد.

گلدمن ساکس در یادداشت جدیدش به مطالعه‌ای اشاره کرد که نشان می‌دهد ۶۰ درصد از شغل‌های امروز در سال ۱۹۴۰ وجود نداشتند. این شرکت می‌گوید یک‌چهارم از تمامی وظایف کاری انجام‌شده در ایالات متحده و اروپا ممکن است به دست هوش مصنوعی بیفتد.

در آمریکا، مشاغل اداری و حقوقی و معماری و مهندسی در بیشترین خطر اتوماسیون هستند. شغل‌هایی که کمتر در معرض هوش مصنوعی قرار می‌گیرند شامل مواردی مثل نظافت، نصب و تعمیر محصولات و کارهای ساختمانی است.

منبع: زومیت





انسان‌ها به‌دست هوش‌مصنوعی حذف می‌شوند؟

انسان‌ها به‌دست هوش‌مصنوعی حذف می‌شوند؟
گروه علمی: «جفری هینتون»، پدرخوانده هوش مصنوعی باور دارد که هوش مصنوعی به‌سرعت درحال پیشرفت است و پیش‌بینی کرده که احتمال حذف انسان‌ها در آینده‌ای نزدیک توسط نسل جدید از این فناوری، یک احتمال غیرممکن نیست.
جفری هینتون، دانشمند کامپیوتر انگلیسی، بیشتر به عنوان «پدرخوانده هوش مصنوعی» شناخته می‌شود. کار اصلی او بر روی شبکه‌های عصبی با تقلید از فرآیندهای شناخت انسان، پایه‌های مدل‌های یادگیری ماشین امروزی را شکل داد. او خلق این فناوری را به اختراع برق یا چرخ تشبیه کرده است. او که در گوگل و دانشگاه تورنتو کار می‌کند، می‌گوید توسعه هوش جامع مصنوعی سریع‌تر از آن‌چه تصورش را می‌کنید، درحال پیشروی است.
 
جفری هینتون درباره آینده هوش مصنوعی نسل جدید پیش‌بینی می‌کند: «تا همین چند وقت پیش فکر می‌کردم 20 تا 50 سال دیگر زمان لازم است تا به هوش مصنوعی همه‌کاره برسیم. حالا معتقدم احتمالاً 20 سال یا کمتر زمان لازم داریم.» او همچنین در پاسخ به این سؤال که آیا هوش مصنوعی می‌تواند بشریت را از بین ببرد یا نه، گفت: «فکر می‌کنم غیرقابل‌تصور نیست. تنها همین را می‌گویم.»
هنوز برای کنترل هوش مصنوعی دیر نیست
هوش جامع مصنوعی یا AGI به سیستمی اشاره می‌کند که بتواند مانند انسان‌ها همه فعالیت‌های ذهنی را در بر بگیرد. چنین سیستمی هنوز به‌وجود نیامده است، اما با ظهور ابزارهای جدید هوش مصنوعی از جمله ChatGPT، این بحث دوباره داغ شده است. هینتون باور دارد که کامپیوترها درنهایت می‌توانند قابلیت تفکر و ایده‌پردازی پیدا کنند تا خودشان را بهبود ببخشند.

به بیان دیگر AGI اصطلاحی است که هوش مصنوعی بالقوه‌ای را توصیف می‌کند که می‌تواند سطوح هوش انسانی یا فوق‌انسانی را نشان دهد. یک AGI به جای اینکه آشکارا تخصصی باشد، قادر به یادگیری و فکر کردن به تنهایی برای حل طیف وسیعی از مشکلات است.

در حال حاضر، نشانه‌های AGI اغلب برای تقویت قابلیت‌های مدل‌های فعلی مورد استفاده قرار می‌گیرد. اما صرف نظر از غوغای صنعت که از ورود آن استقبال می‌کند یا اینکه واقعاً چه مدت ممکن است تا AGI برای ما طلوع کند، هینتون می‌گوید که اکنون باید به دقت عواقب آن را در نظر بگیریم که ممکن است شامل یک مسئله جزئی در تلاش برای نابود کردن بشریت باشد.
 
پدرخوانده هوش مصنوعی گفته است که متخصصان باید درباره این مسئله فکر کنند و ببینند که چطور می‌توانند چنین سیستم‌هایی را تحت کنترل در بیاورند. با این حال، او تاکید داشته است که بیشتر نگرانی‌های مردم پیرامون خودآگاهی هوش مصنوعی در آینده نزدیک محقق نخواهد شد. هینتون می‌گوید: «فکر می‌کنم خیلی منطقی است که مردم نگران چنین مسائلی باشند، ولی چنین اتفاقاتی در یک یا دو سال آینده رخ نخواهد داد.» البته او اعتقاد دارد که حرف‌زدن و فکرکردن پیرامون این موضوعات برای همه مفید است.
همچنین، بر اساس دیدگاه هینتون، بشریت هنوز اندکی فضای تنفسی دارد تا اینکه اوضاع کاملاً از کنترل خارج شود، زیرا مدل‌های کنونی در دسترس عموم، جای کار بیشتری دارند. از سوی دیگر نیز «سم آلتمن»، مدیرعامل OpenAI هم چندی پیش درباره توسعه ChatGPT و هوش مصنوعی همچنین در این باره گفته بود: «باید در این مسیر مراقب باشیم. فکر می‌کنم مردم باید خوشحال باشند که ما کمی در این باره واهمه داریم.»

هینتون نیز پیش‌بینی می‌کند که «ما به سمت سیستم‌هایی حرکت می‌کنیم که می‌توانند دیدگاه‌های مختلف جهان را درک کنند که ترسناک است، زیرا به این معنی است که هر کسی که از هوش مصنوعی بهره می‌برد می‌تواند از آن استفاده کند و جهان‌بینی ویژه خود را ایجاد کند.» با این حال، هینتون معتقد است که مسئله واقعی در افق این است که فناوری هوش مصنوعی که ما در حال حاضر داریم یا «AGI» می‌تواند در انحصار دولت‌ها و شرکت‌های تشنه قدرت قرار گیرد که شاید نتایج مثبتی به دنبال نداشته باشد.





زمانی که نتوانیم میان انسان و ماشین تفاوت قائل شویم چه خواهد شد؟
یک خبر خوب نیز وجود دارد. اگر یک سیستم هوش مصنوعی برای تقلید از ذهن ما ساخته شده باشد می‌تواند پس از مرگ مان به تعامل با عزیزان مان ادامه دهد. اگر پیشرفت‌های آینده در زیست شناسی این امکان را فراهم سازد که بدن مان را ترمیم کنیم تا از پوسیدگی جلوگیری شود ما می‌توانیم برای همیشه زندگی کنیم.

 منبع: هیل
ترجمه: فرارو

  آوی لوب، رئیس پروژه گالیله و مدیر موسس ابتکار عمل سیاه چاله دانشگاه هاروارد و مدیر موسسه تئوری و محاسبات در مرکز اخترفیزیک هاروارد -اسمیتسونین و رئیس سابق بخش نجوم در دانشگاه هاروارد می‌باشد. او عضو سابق شورای مشاوران رئیس جمهور امریکا و رئیس سابق هیئت فیزیک و نجوم آکادمی‌های ملی بوده است.

پروفسور لوب نویسنده کتاب "فراز زمینی: اولین نشانه حیات هوشمند فراتر از زمین" است که از پرفروش‌ترین کتاب‌ها بوده است. کتاب جدید او با عنوان "بین ستاره‌ای" در آگوست سال ۲۰۲۳ میلادی چاپ خواهد شد. پروژه گالیله تحت هدایت او به این موضوع اختصاص دارد که انسان‌ها دیگر نمی‌توانند وجود احتمالی تمدن‌های فناوری فرازمینی را نادیده بگیرند و علم نباید به طور جزمی توضیحات بالقوه فرازمینی را به دلیل انگ اجتماعی رد کند. برخلاف سایر پروژه‌های مشابه هدف پروژه گالیله جستجوی اجسام فیزیکی و نه سیگنال‌های الکترومغناطیسی مرتبط با تجهیزات تکنولوژیکی فرازمینی است.

  معنای انسان بودن اغلب با ویژگی‌های متافیزیکی مانند "آگاه بودن"، داشتن "روح" و اعمال "اراده آزاد" همراه است. با این وجود، اگر یک سیستم هوش مصنوعی مانند نسخه بهبود یافته چت جی پی تی (Chat GPT) دارای ویژگی‌های مشابهی در بازی تقلید "آلن تورینگ" ریاضیدان باشد آن گاه چیز جدیدی در مورد واقعیت خواهیم آموخت.

بدون فرصت گفتگو برای تمایز انسان از ماشین آشکار خواهد شد که کیفیت‌های متافیزیکی پدیده‌های نوظهوری هستند، زیرا ساختار پیچیده سیلیکون در رایانه می‌تواند ساختار پیچیده‌ای از مولکول‌های آلی در مغز انسان را تقلید کند.

به عبارت دیگر، در آن صورت هیچ تفاوت اساسی‌ای بین تعاملات "من – تو" و "من – آن" که یک قرن پیش توسط "مارتین بوبر" فیلسوف تعریف شده بود وجود نخواهد داشت. در آن صورت هر دو معادل تعاملات "من – هوش مصنوعی" و "هوش مصنوعی – هوش مصنوعی" خواهند بود، زیرا هوش مصنوعی صرفا از دنیای مادی ساخته شده است.

این بدان معناست که وقتی بدن ما می‌میرد کل هویت ما می‌میرد. به عبارت دیگر، مرگ مانند جدا کردن یک سیستم هوش مصنوعی از منبع تغذیه آن است. با این وجود، یک خبر خوب نیز وجود دارد. اگر یک سیستم هوش مصنوعی برای تقلید از ذهن ما ساخته شده باشد می‌تواند پس از مرگ مان به تعامل با عزیزان مان ادامه دهد. اگر پیشرفت‌های آینده در زیست شناسی این امکان را فراهم سازد که بدن مان را ترمیم کنیم تا از پوسیدگی جلوگیری شود ما می‌توانیم برای همیشه زندگی کنیم. اگر بتوانیم بدن خود را در دنیای واقعی که در حین زندگی ما را احاطه کرده است زنده کنیم چرا رویای بقای "روح" خود را در دنیای بعدی داشته باشیم؟

این درک هشیارانه در مورد مادی گرایی یک مزیت اضافی در آموزش فروتنی به ما دارد. به ارث بردن بدن مان از والدین مانند گرفتن خودرو از یک نمایندگی است. ما صرفا می‌توانیم به نحوه استفاده از آن افتخار کنیم و نه به توانایی‌های آن خودرو. هیچ مبنایی برای افتخار کردن به آی کیو یا ضریب هوشی مان وجود ندارد همان گونه که افتخار کردن به تعداد دور در دقیقه‌ای که موتور خودروی خریداری شده مان نشان می‌دهد امری منطقی نیست.

تنها قضاوت ارزشی باید بر اساس این باشد که آیا انسان‌ها توانایی‌های خود را برای ترویج خیر یا شر به کار می‌گیرند؟ مشابه این که آیا افراد انرژی هسته‌ای را برای منافع یا سرنوشت جامعه مهار می‌کنند؟

با در نظر گرفتن مرگ قریب الوقوع مان وجود ما شکلی گذرا از ماده است. با این وجود، اگر اصول راهنمای مان حفظ شود می‌تواند مهم باشد.

ارزش آن را دارد که بررسی‌های علمی در این راستا صورت گیرند: اگر بشریت به جای صرف ۲ تریلیون دلار در سال برای هزینه‌های نظامی هزینه برای کاوش در فضا را انتخاب می‌کرد طول عمر بهتری داشتیم. همین بودجه به ما این امکان را می‌دهد که ظرف مدت کم‌تر از یک قرن به هر ستاره در کهکشان راه شیری یک کاوشگر بفرستیم که افزایشی یک میلیاردی در مقایسه با نرخ فعلی که با ارسال پنج کاوشگر بین ستاره‌ای در طول پنج دهه از وویجر ۱ و ۲ گرفته تا پایونیر ۱۰ و ۱۱ و نیوهورایزنز نشان داده شده است.

اکثر ستارگان خورشید مانند میلیارد‌ها سال پیش از خورشید شکل گرفته اند یک تاخیر زمانی بسیار بیش‌تر از زمانی که موشک‌های شیمیایی برای عبور از دیسک راه شیری نیاز دارند. اگر تنها یکی از ده‌ها میلیارد منظومه زمین - خورشید در کهکشان راه شیری باعث ایجاد یک تمدن فناوری صلح آمیز فضاپیمایی شود و اگر آن تمدن کاوشگر‌هایی را با هزینه سالانه ۲ تریلیون دلار به مدت یک میلیون سال به فضا پرتاب کند در آن صورت ۱۰۰۰۰ شئی از این تمدن دیدنی در منظومه شمسی وجود خواهد داشت.

دستگاه‌های کاربردی "بقای شایسته‌ترین ها" را در فرآیند انتخاب داروینی بین ستاره‌ای دنبال می‌کنند که ممکن است همان گونه که ریاضیدانانی، چون "جان فون نویمان" و "فریمن دایسون" پیش بینی کرده اند خود همانند سازی تکنولوژیکی باشد.

ماشین‌های صلح‌جو احتمالا با مدت زمانی طولانی‌تر زنده می‌مانند، زیرا در مقایسه با انواع تهاجمی اغلب توسط درگیری‌های فیزیکی آسیب نمی‌بینند. پیشرفت علمی آن را از زنجیره نفس انسانی رها خواهد ساخت که ترجیح می‌دهد وجود موجودات ذی شعور فرازمینی را ادعایی خارق العاده فرض کند.

دستگاه‌های بین‌ستاره‌ای کاربردی ممکن است حاوی مغز‌های هوش مصنوعی باشند که فرستنده‌های خود را بازتاب می‌دهند. این سیستم‌های هوش مصنوعی در تمثیل افلاطون از غار که در حدود ۳۸۰ قبل از میلاد مسیح در جمهوری نوشته شده است قرار می‌گیرند.

در این گفتگوی باستانی بین سقراط و برادر افلاطون آن فیلسوف یونانی گروهی از مردم را توصیف می‌کند که در طول زندگی خود به دیوار غار بسته شده اند مشابه روشی که ما توسط گرانش در سطح زمین محدود شده ایم. زندانیان سایه‌هایی را تماشا می‌کنند که بر روی دیوار خالی از اشیا دیده می‌شوند. آنان هیچ گاه پشت سرشان را نگاه نکردند و پشت شان آتشی روشن است و در جلوی آتش مجسمه‌هایی قرار دارند که هنگامی که حرکت می‌کنند سایه ٔشان بر دیوار رو به رو می‌افتد. این استعاره برای اوموآموا نخستین جرم میان ستاره‌ای شناخته شده‌ای که مسیر حرکت آن از منظومه خورشیدی می‌گذرد و توسط خورشید روشن می‌شود کافیست. به گفته سقراط در این گفتگو فیلسوف به دنبال درک سطوح بالاتر واقعیت است. معادل مدرن آن دانشمندی است قصد دارد ماهیت اجرام بین ستاره‌ای را دریابد همانند کاری که من در پروژه گالیله هاروارد انجام می‌دهم.

در عین حال، تمثیل افلاطون ادعا می‌کند که سایر زندانیان غار حتی تمایلی به ترک زندان خود ندارند، زیرا آنان زندگی بهتری را نمی‌شناسند. این نشان دهنده واکنش فعلی شکاکان به جستجوی علمی برای کشف اشیاء تکنولوژیکی فرازمینی است.

از آنجایی که علم و فناوری مدرن ما تنها یک قرن قدمت دارد این احتمال وجود دارد که کاوشگر‌های هوش مصنوعی فرازمینی بسیار پیشرفته‌تر از گجت‌هایی (یا ابزارک به وسایل الکترونیکی یا مکانیکی کوچکی گفته می‌شود که برای کاربرد‌های خاصی طراحی شده اند و به آسان‌تر شدن زندگی کمک می‌کنند) باشند که امروز می‌توانیم بسازیم. برخورد ما با آن یک تجربه یادگیری خواهد بود و با احساس فروتنی مناسب به ما این امکان را می‌دهد که جهشی کوانتومی به سمت آینده تکنولوژیکی خود داشته باشیم.

علاقه دولت ایالات متحده به پدیده‌های هوایی ناشناس (UAP) به عنوان یک موضوع امنیت ملی علاقه علمی به اجرام فرازمینی را تحسین می‌کند. با ساقط کردن بالن‌ها یا پهپاد‌های کشور‌های متخاصم دولت از شلوغی اشیاء ساخته شده توسط انسان در آسمان ما می‌کاهد و بررسی این که آیا کاوشگر‌های فرازمینی در آنجا وجود دارد یا خیر را برای دانشمندان آسان‌تر می‌کند.

در مجموع، با فرض اینکه واقعیت فیزیکی شناخته شده تمام انواع هوش را به تصویر می‌کشد ما باید بتوانیم کاوشگر‌های هوش مصنوعی فرازمینی را با استفاده از آشکارساز‌ها بر اساس فیزیکی که می‌شناسیم شناسایی نماییم. داده‌های پروژه گالیله که ما آپلود و تجزیه و تحلیل آن را آغاز کرده ایم در سالیان آینده در دسترس عموم قرار خواهد گرفت. منتظر نتایج باشید، زیرا ما "تمثیل غار" افلاطون را به واقعیت تبدیل می‌کنیم.