Many businesses claim they’re using it, but they’re kidding themselves—and they’re kidding you, too
By Max Simkoff, Andy Mahdavi on
Credit: Getty Images
During the past few years, all kinds of businesses have begun using what they call “artificial intelligence.” One international survey said 37 percent of organizations have, as a press release put it, “implemented AI in some form.” A different survey, looking at U.S. businesses, put the figure at 61 percent. A third, focused on the U.S. and the U.K., said, in the words of another press release, a whopping “77% have implemented some AI-related technologies in the workplace.”
The numbers don’t differ based on geography alone. They highlight a problem facing any discussion about AI: Few people agree on what it is.
Working in this space, we believe all such discussions are premature. In fact, artificial intelligence for business doesn’t really exist yet. To paraphrase Mark Twain (or rather a common misquote of what Twain actually said), reports of AI’s birth have been greatly exaggerated.
We’re not alone in thinking this. Luc Julia, Samsung’s vice president of innovation and co-inventor of Siri, has said something similar. Today’s tools for businesses involve mathematics, statistics, machine learning, deep learning and big data—with better machines than in the past. But what is so often referred to as AI doesn’t actually involve an artificial form of intelligence, Julia argues. Understanding this is crucial for businesses that want to take full advantage of the opportunities new technologies have to offer and build defenses against future competition.
Today’s tools can be powerful. But AI is best thought of as a next-generation set of technologies that businesses have not yet begun to use. Someday they will—and that will cause a whole new era of disruption. If businesses think they’re already using these technologies, they may not be prepared for the competitors who better understand the differences, put them to use and come up with better, more powerful ways to serve customers.
So if it isn’t AI, what technologies are businesses using today?
For many, it’s automation. Organizations are using processes that have existed for decades but have been carried out by people in longhand (such as entering information into books) or in spreadsheets. Now these same processes are being translated into code for machines to do. The machines are like player pianos, mindlessly executing actions they don’t understand.
Many traditional companies aren’t even doing this. One of us (Simkoff) launched States Title to transform the title insurance industry after discovering that it was plagued with outdated mechanisms, including large numbers of employees doing manual data entry. With an “it ain’t broke, why fix it” mentality, companies in this market were keeping the same old processes in place, with personnel repeatedly entering the same information into multiple computer programs—a system that’s expensive, rife with errors and easy to improve through automation.
Some businesses today are using machine learning, though just a few. It involves a set of computational techniques that have come of age since the 2000s. With these tools, machines figure out how to improve their own results over time. Machine learning looks at patterns and trends from data analysis and draws conclusions.
Before joining States Title, one of us (Mahdavi) used some of these technologies for research in the physical sciences, deriving results on galaxies, cosmology and dark matter. These kinds of “far out” technologies require machines that can build on their own discoveries. They involve getting machines to use deductive logic and problem-solving, and to keep reinforcing their processes with what they’ve learned.
Machine learning can have applications in any business. If yours isn’t using it now, be aware that there are almost certainly competitors in your industry looking to do so.
How is artificial intelligence different? As we see it, AI determines an optimal solution to a problem by using intelligence similar to that of a human being. In addition to looking for trends in data, it also takes in and combines information from other sources to come up with a logical answer.
When AI for business arrives, expect a radical transformation. It will give birth to organizations built differently from the ground up. Rather than asking what products or services people can provide and how machines can help them do so, the leaders of these businesses will start with what artificial intelligence can do and build businesses around that. True AI may even start a company on its own. It will be a new paradigm.
Business leaders would do well to become acquainted with the latest technologies as they’re developed and to hire experts who understand them. One of the biggest reasons States Title took off so quickly was that it entered an industry unprepared for the kind of change that the most cutting-edge technologies provide. At the speed of change in today’s business environment, every industry is ripe for similar disruption.
The views expressed are those of the author(s) and are not necessarily those of Scientific American.
مدیرعامل ایرانسل در نشست تخصصی «نقش اینترنت اشیا در شهر هوشمند»،بر لزوم رفع موانع فعالیت بازیگران حوزه شهر هوشمند تأکید کرد.
به گزارش روابط عمومی ایرانسل، نشست تخصصی «نقش اینترنت اشیا در شهر هوشمند» ظهر امروز، ۱۹ آذر ۱۳۹۸، به عنوان بخشی از همایش «تهران هوشمند»، در سالن سعدی مرکز همایشهای برج میلاد با حضور دکتر بیژن عباسی آرند مدیرعامل ایرانسل، دکتر رسول سرائیان دبیرکل سازمان نظام صنفی رایانهای کشور، دکتر مجید رسولی عضو هیأت علمی پژوهشگاه ارتباطات و فناوری اطلاعات، دکتر وحید شاه منصوری از «ستاد توسعه فناوریهای اقتصاد دیجیتال و هوشمندسازی» و علی رحمانپور همبنیانگذار و مدیرعامل لینکپ برگزار شد.
مدیرعامل ایرانسل در این نشست، با اشاره به پیشبینیهای منتشر شده در زمینه توسعه سریع بازار اینترنت اشیا در جهان، بر لزوم تسهیل شرایط و رفع موانع فعالیت بازیگران این عرصه تأکید کرد و راهاندازی سریع شبکه نسل سوم و چهارم اینترنت همراه پس از رفع انحصار توسط دولت را نمونه مشخصی برای آن دانست.
وی همچنین بر آمادگی ایرانسل برای بررسی پیشنهاد شرکتهای آماده برای فعالیت در عرصه شهر هوشمند تأکید کرد و در عین حال، تحقق این گونه همکاریها را به دلیل گستردگی سطح فعالیت، منوط به ارائه طرح و مدل تجاری مناسب و کامل دانست.
عباسی آرند همچنین در بخش دیگری از سخنانش از ادامه همکاری ایرانسل با شرکتهای دانشبنیان و شرکت گاز در زمینه حسگر و کنتور هوشمند گاز خبر داد و ابراز امیدواری کرد که این خدمت در سطح تجاری نیز به مشترکان ارائه شود.
همچنین در این نشست، رسول سراییان، دبیرکل سازمان نظام صنفی رایانهای کشور، بر لزوم پیادهسازی یک مدل برای حضور بخش خصوصی در صنعت اینترنت اشیا تاکید کرد و راهاندازی پروژه ایرانسل را یک مدل موفق برای تنظیم، پیادهسازی و اجرای یک طرح و مدل تجاری موفق برشمرد.
وحید شاه منصوری، از ستاد توسعه فناوریهای اقتصاد دیجیتال و هوشمندسازی نیز با اشاره لزوم حمایت دولت از پیشرفت پروژههای اینترنت اشیا، از برنامه این ستاد برای فعالیت در حوزه کشاورزی و شهر هوشمند خبر داد.
علی رحمانپور مدیرعامل استارتاپ لینکپ نیز با اشاره به نقش مهم و کلیدی اپراتورها برای جلب اعتماد کاربران نهایی خدمات شهر هوشمند، بر ضرورت مشخص شدن نقشها برای شکلگیری همکاری بین بازیگران مختلف این صنعت در راستای رشد بازار تاکید کرد و آن را حلقه گمشده اتصال مجموعه بازیگران دانست.
سومین همایش و نمایشگاه «تهران هوشمند» با حضور ایرانسل و ارائه زیرساخت NB-IoT، در روزهای ۱۸ و ۱۹ آذر ۱۳۹۸ توسط سازمان فاوای شهرداری تهران در مرکز همایشهای برج میلاد برگزار شد و محمدجواد آذری جهرمی وزیر ارتباطات و فناوری اطلاعات، سورنا ستاری معاون علمی و فناوری رئیسجمهوری، پیروز حناچی شهردار و محسن هاشمی رئیس شورای اسلامی شهر تهران در مراسم آغاز به کار آن حضور داشتند.
شبکه NB-IoT یا شبکه کم پهنای اینترنت اشیا، بستری است که اطلاعات دریافتی از حسگرهای حوزه اینترنت اشیا را به سیستمهای تحلیل داده منتقل میکند و ایرانسل، برای نخستین بار جامعترین نسخه از این شبکه کاربردی، برای دستیابی به شهر هوشمند را در سومین همایش و نمایشگاه «تهران هوشمند» ارائه کرد و کوشید تا دانشجویان و کسب و کارهای نوپا و صنایعی که میتوانند از شبکه NB-IoT بهره بگیرند را شناسایی کرده و برای همکاری با آنها گامهای مؤثری بردارد.
در شهرهای هوشمند، از دادهها و فناوریهای موجود برای ارتقای کارآیی، توسعه اقتصادی و بهبود کیفیت زندگی شهروندان استفاده میشود که با توسعه یافتن تکنولوژیهای شهر هوشمند، موارد استفاده بیشتری از IoT نیز ایجاد خواهد شد. از جمله خدمات هوشمند شهری که توسط ایرانسل، تا امروز ارائه شده است میتوان به «پارکینگ هوشمند»، «روشنایی هوشمند معابر»، «دوچرخه اشتراکی»، «کنتور خوانی هوشمند»، «مدیریت هوشمند ناوگان» و «نظارت بر تجهیزات و داراییها» اشاره کرد.
دانشجویان، صاحبان کسب و کارهای مرتبط و سایر علاقهمندانی که امکان حضور در غرفه ایرانسل در همایش و نمایشگاه «تهران هوشمند» را پیدا نکردند، میتوانند با مراجعه به بخش مشترکان سازمانی در وبسایت ایرانسل، به نشانی business.irancell.ir برای ثبت اطلاعات خود اقدام کنند.
In January of this year, DeepMind announced it had hit a milestone in its quest for artificial general intelligence. It had designed an AI system, called AlphaStar, that beat two professional players at StarCraft II, a popular video game about galactic warfare. This was quite a feat. StarCaft II is highly complex, with 1026 choices for every move. It’s also a game of imperfect information—and there are no definitive strategies for winning. The achievement marked a new level of machine intelligence.
Now DeepMind, an Alphabet subsidiary, is releasing an update. AlphaStar now outranks the vast majority of active StarCraft players, demonstrating a much more robust and repeatable ability to strategize on the fly than before. The results, published in Nature today, could have important implications for applications ranging from machine translation to digital assistants or even military planning.
StarCraft II is a real-time strategy game, most often played one on one. A player must choose one of three human or alien races—Protoss, Terran, or Zerg—and alternate between gathering resources, building infrastructure and weapons, and attacking the opponent to win the game. Every race has unique skill sets and limitations that affect the winning strategy, so players commonly pick and master playing with one.
AlphaStar used reinforcement learning, where an algorithm learns through trial and error, to master playing with all the races. “This is really important because it means that the same type of methods can in principle be applied to other domains,” said David Silver, DeepMind’s principal research scientist, on a press call. The AI also reached a rank above 99.8% of the active players in the official online league.
In order to attain such flexibility, the DeepMind team modified a commonly used technique known as self-play, in which a reinforcement-learning algorithm plays against itself to learn faster. DeepMind famously used this technique to train AlphaGo Zero, the program that taught itself without any human input to beat the best players in the ancient game of Go. The lab also used it in the preliminary version of AlphaStar.
Conventionally in self-play, both versions of the algorithm are programmed to maximize their chances of winning. But the researchers discovered that that didn’t necessarily result in the most robust algorithms. For such an open-ended game, it risked pigeon-holing the algorithm into specific strategies that would only work under certain conditions.
Taking inspiration from the way pro StarCraft II players train with one another, the researchers instead programmed one of the algorithms to expose the flaws of the other rather than maximize its own chance of winning. “That’s kind of [like] asking a friend to play against you,” said Oriol Vinyals, the lead researcher on the project, on the call. “These friends should show you what your weaknesses are, so then eventually you can become stronger.” The method produced much more generalizable algorithms that could adapt to a broader range of game scenarios.
The researchers believe AlphaStar’s strategy development and coordination skills could be applied to many other problems. “We chose StarCraft [...] because we felt it mirrored a lot of challenges that actually come up in real-world applications,” said Silver. These applications could include digital assistants, self-driving cars, or other machines that have to interact with humans, he said.
“The complexity [of StarCraft] is much more reminiscent of the scales that we’re seeing in the real world,” said Silver.
But AlphaStar demonstrates AI’s significant limitations, too. For example, it still needs orders of magnitude more training data than a human player to attain the same level of skill. Such learning software is also still a long way off from being translated into sophisticated robotics or real-world applications.شهرداری نیویورک قصد دارد منصبی را برای نظارت بر ایجاد الگوریتم های هوش مصنوعی در این شهر ایجاد کند.
به گزارش خبرگزاری مهر به نقل از انگجت، شهر نیویورک تصمیم دارد از هرگونه تبعیض در هوش مصنوعی و الگوریتم های دیگر اجتناب کند.
درهمین راستا بیل دی بلاسیو شهردار نیویورک یک دستور اجرایی صادر کرده تا پستی برای مدیریت و سیاستگذاری الگوریتم ها در این شهر ایجاد شود.
کسی که در این پست منصوب شود باید با دفتر عملیات های شهردار همکاری کند و دستورالعملی برای اخلاقی بودن الگوریتم های هوش مصنوعی اجرا کند.
این فرد باید تضمین کند الگوریتم های شهری براساس اصول «عدالت، انصاف و اعتبار» ایجاد شده اند. به عبارت دقیق چنین فردی باید درک عمیقی از عملکرد الگوریتم ها در دنیای واقعی داشته باشد.