واحد مشترک کمکی پژوهش و مهندسی «هوش یار-تواندار»     (HT-CSURE)

واحد مشترک کمکی پژوهش و مهندسی «هوش یار-تواندار» (HT-CSURE)

Hooshyar-Tavandar Common Subsidiary Unit for Research & Engineering
واحد مشترک کمکی پژوهش و مهندسی «هوش یار-تواندار»     (HT-CSURE)

واحد مشترک کمکی پژوهش و مهندسی «هوش یار-تواندار» (HT-CSURE)

Hooshyar-Tavandar Common Subsidiary Unit for Research & Engineering

گوگل در آستانه ایجاد تحول در دنیای کامپیوترهای کوانتومی

رایورز - چیپ ۴۹ کیوبیتی گوگل، این امکان را می‌سازد که سیستم‌های مبتنی بر ۴۹ کیوبیت ساخته شوند و سپس مسائلی را حل کنند که برای کامپیوترهای فعلی بسیار دور از دسترس هستند.

شرکت گوگل که در عرصه کامپیوترهای کوانتومی پیشروست، همچنان در این زمینه در تکاپوست و به نظر می‌رسد که به زودی بتواند به یک موفقیت چشمگیر در این زمینه دست یابد.

به گزارش بیزنس اینسایدر، هر چند پردازنده‌های ۲۰ کیوبیتی این شرکت در حال پشت سرگذاشتن مراحل آزمایشی خود هستند، اما مطابق برنامه‌های از پیش تعیین شده، گوگل درصدد آن است که تا پایان سال ۲۰۱۷ پردازنده‌های ۴۹ کیوبیتی را نیز کاملاً آماده فعالیت عملیاتی نماید. شایان ذکر است که در حال حاضر قوی‌ترین چیپ های این شرکت ۹ کیوبیتی هستند که از سال ۲۰۱۵ میلادی عملیاتی شده‌اند.

به گفته کارشناسان، مطابق منطق کامپیوترهای دیجیتال سنتی، هر بیت در واقع ظرفیت یک محتوای باینری را دارد که می‌تواند تنها صفر و یا یک باشد، همانند لامپی که تنها دو حالت ممکن برای آن متصور است: "روشن" یا "خاموش".

اما تفاوت اساسی در کامپیوترهای کوانتومی این است که بر مبنای quantum bits یا qubits کار می‌کند. در این مود، یک کیوبیت می‌تواند همزمان، هر دو حالت صفر و یک را داشته باشد. به نظر متخصصین، همین امر، امکان ترکیب و نیز محاسبات بیشتری را به پردازنده می‌دهد و در نتیجه، به شدت توان کامپیوترها را بالا می‌برد.

 

 

گفتنی است که موضوع فناوری مربوط به کامپیوترهای کوانتومی مدت‌ها فقط در دانشگاه‌ها و محافل آکادمیک مورد استفاده قرار می‌گرفت، اما به تازگی دامنه این موضوع به شرکت‌های تکنولوژی و نیز بازار کشیده شده و رقابت بر سر آن نیز در حال شکل‌گیری است.

مطابق جزئیات این اخبار، چیپ ۴۹ کیوبیتی گوگل، این امکان را فراهم می‌سازد که سیستم‌های مبتنی بر ۴۹ کیوبیت ساخته شوند و سپس مسائلی را حل کنند که برای کامپیوترهای فعلی بسیار دور از دسترس هستند.

گوگل، رسیدن به چنین هدفی را امتیازی بسیار بزرگ و برتری بی‌سابقه می‌داند. به گفته گوگل، هر چه به این هدف نزدیک‌تر شویم، میزان خطا در سیستم نیز به شدت کاهش خواهد یافت.

***Microsoft Plans on Storing Its Data on DNA in The Next 3 Years

Microsoft Plans on Storing Its Data on DNA in The Next 3 Years

Bring on DNA hard drives.

MIKE MCRAE
27 MAY 2017

If we used DNA like we use magnetic tape to store data today, it's theoretically possible to s
tore all of the information humans have ever recorded in a space roughly the size of a double garage.

Sharing their goals with MIT Technology Review this week, Microsoft Research computer architects say they want to start storing their data on strands of DNA within the next few years, and expect to have an operational storage system using DNA within a data centre by the end of the decade.

As antiquated as it seems, one of the best ways to store a lot of information in a small space right now is good, old-fashioned magnetic tape - not only is it cheap, it's rugged enough to hold information for up to 30 years, and can hold as much as a terabyte of data per roll.

But when we consider more data has been generated in just the past two years than in all of human history, it seems even magnetic tape might not cut it in the next few decades.

A biological material such as DNA might appear to be an odd choice for backing up large amounts of digital information, yet its ability to pack enormous amounts of data in a tiny space has been clear for more than 70 years.

Back in the 1940s, physicist Erwin "cat in a box" Schrödinger proposed a hereditary "code-script" could be packed into a non-repeating structure he described as an aperiodic crystal.

His suggestion famously inspired James Watson and Francis Crick to determine DNA's helical structure based on the research of Rosalind Franklin, sparking a revolution in understanding the mechanics of life.

While strings of nucleic acid have been used to cram information into living cells for billions of years, its role in IT data storage was demonstrated for the first time just five years ago, when a Harvard University geneticist encoded his book – including jpg data for illustrations – in just under 55,000 thousand strands of DNA.

Since then, the technology has progressed to the point where scientists have been able to record a whopping 215 petabytes (215 million gigabytes) of information on a single gram of DNA.

It might be compact, but recording data in the form of a nucleic acid sequence isn't fast. Or cheap.

Last year, Microsoft demonstrated its DNA data storage technology by encoding roughly 200 megabytes of data in the form of 100 literary classics in DNA's four bases in a single process.

According to MIT Review, this process would have cost around US$800,000 using materials on the open market, meaning it would need to be thousands of times cheaper to make it a competitive option.

It was also incredibly slow, with data stored at a rate of about 400 bytes per second. Microsoft says it needs to get to around 100 megabytes per second to be feasible.

It's not clear what efficiencies Microsoft may have found to lower the costs of the process and speed it up, but new technologies have been seeing the cost of gene sequencing drop in recent years, so its end of the decade target may be realistic.

Even then, it's likely it would only be used in select circumstances for customers willing to pay for a specialised storage solution – like critical archives of medical or legal data – rather than as a replacement for current large-scale storage methods.

But while we're speculating, a somewhat more sci-fi use for DNA-based data storage could one day involve living computers.

While Microsoft's DNA storage solution will be based on chips, there's every possibility that future versions of storage could involve enzymes or bacteria engineered to carry out computations.

Even outside of cells, DNA potentially offers novel ways to compute data, opening ways to rapidly crunch numbers for certain problems much as quantum computers do for other areas of mathematics.

For now, it's looking as if DNA has a solid role to play in solving a very real problem that will only get worse.

هوش مصنوعی و یادگیری ماشینی، محور اصلی کنفرانس توسعه دهندگان گوگل

رایورز - کنفرانس توسعه دهندگان گوگل موسوم به آی/اُ اخیرا برگزار شد و تمرکز اصلی این کنفرانس و برگزارکنندگان بر روی فناوری هوش مصنوعی و یادگیری ماشینی بود.

ساندار پیچای، مدیرعامل گوگل در کنفرانس "توسعه دهندگان گوگل" که در سال گذشته میلادی برگزار شد، توضیح داده بود که چگونه جهان دارد از شیوه ابتدا موبایل، به سمت شیوه هوش مصنوعی یا اِی.آی حرکت می‌کند. اما در کنفرانس توسعه دهندگان گوگل که اخیراً برگزار شد، تمرکز این شرکت روی کاربرد هوش مصنوعی برای افراد مختلف است.

به گزارش رایورز به نقل از تاپ‌تک نیوز، در روز آخر این رویداد، گوگل سعی کرد که اهمیت این هوش مصنوعی و یادگیری ماشینی را پررنگ‌تر کند و کاربردی بودن این دو فناوری را برای تمامی افراد شرح دهد.

کاربرد این دو فناوری در زمینه‌های زیادی در حال گسترش است و از ایمیل تا پیدا کردن شغل در بخش بهداشت و درمان را پوشش می‌دهد. یکی از ابتکارهایی که اخیراً گوگل به خرج داد، این بود که از یادگیری ماشینی برای طراحی یادگیری ماشینی بهتر استفاده کرد.

یکی از پدیده‌های دیگری که در حین این رویداد از آن رونمایی شد، نسل دوم واحدهای پردازشی تانسور یا تی.پی.یو (TPU) یا تراشه‌هایی با طراحی سفارشی برای ماشین یادگیری بود. تی.پی.یو‌های ابری جدید از طریق موتور پردازش گوگل و با یک برنامه آلفا، در اختیار پژوهشگران و توسعه‌دهندگان قرار خواهد گرفت.

در این رویداد کلی بوور، معاون بخش واقعیت افزوده و واقعیت مجازی اذعان داشت: «گوگل کماکان دارد روی پیشبرد قابلیت‌های خود در زمینه واقعیت افزوده (A.R) و واقعیت مجازی (V.R) کار می‌کند و قصد دارد که روی پلتفرم‌هایی سرمایه گذاری کند و بتواند دو قابلیت مورد بحث را در دسترس افراد بیشتری قرار دهد.»

 

 

وی افزود: «برای آنکه رایانش فراگیر در اختیار همگان قرار گیرد، توسعه دهندگان نیاز به ایجاد اپلیکیشن‌ها و تجارب بزرگ‌تر دارند و ما داریم روی ابزارها و فناوری‌هایی کار می‌کنیم تا این مهم، انجام گیرد.»

یک نمونه از این اپلیکیشن‌ها، اینستنت پرویو است که به توسعه دهندگان اجازه می‌دهد که با استفاده از هدست‌های وی.آر، نتایج تغییراتی که در برنامه نویسی اعمال می‌کنند را مشاهده نمایند.

دوران هوش مصنوعی رو به شکوفایی بیشتر است

رایورز - امروزه شاهد پیشرفت هوش مصنوعی و کاربرد آن در تمامی وسایل هستیم. اما با وجود پرکاربرد بودن این فناوری، عمر آن به این زودی به پایان نمی‌رسد.

بدون تردید تاکنون اصطلاح "هوش مصنوعی" را شنیده‌اید. بر اساس گزارش گوگل ترندز، در سال 2012 فقط 5 درصد از مردم آمریکا در مورد هوش مصنوعی در اینترنت جست‌وجو کرده بودند. اما در سال 2017 این عدد به حدود 60 درصد رسیده است.

هوش مصنوعی بر خلاف سایر فناوری‌های زودگذری که وارد صنعت تکنولوژی می‌شود، به این زودی دچار افت و نزول نمی‌شود. توسعه هوش مصنوعی در حقیقت به گونه‌ای است که روز به روز نفوذ خود را در زندگی افراد بیشتر می‌کند.

به گزارش ونچربیت، بر خلاف روزهای اولی که فناوری هوش مصنوعی وارد بازار شده بود، امروز شاهد این هستیم چارچوب‌های قوی و مفید زیادی نظیر تنسورفلو و کافه وجود دارد که نیاز بسیاری از مهندسان به کدنویسی را مرتفع کرده و باعث اجرای آسان فناوری‌های هوش مصنوعی شده است.

این چارچوب، موجب صرفه جویی قابل توجه در وقت و منابع شده است و فناوری هوش مصنوعی را روز به روز گسترده‌تر خواهد کرد و در اختیار تمامی شرکت‌ها قرار خواهد داد.

شبکه‌های عصبی بسیار زیادی وجود دارد که از پیش آموزش‌دیده هستند و برای مصارف عمومی در زمینه‌های مختلف نظیر محتوا، تصویر و تشخیص صدا مورد استفاده قرار می‌گیرند.

 

 

این شبکه‌ها به رشد و رونق تلاش‌های مربوط کارآفرینی در حوزه هوش مصنوعی کمک می‌کنند و امکان استفاده از مدل‌های شبکه عصبی از پیش تهیه‌شده را فراهم می‌کنند. یولو، فستکست و دیپ اسپیچ از جمله مواردی هستند که از این امکانات بهره برده‌اند.

نگهداشت سرویس‌های هوش مصنوعی به مقدار زیادی مقرون به صرفه است و افزایش سرعت محاسبات در آن، به لطف جی.پی.یو عامل بسیار مهمی در رشد روزافزون هوش مصنوعی می‌باشد.

از آنجا که ارائه دهندگان فضای ابری مانند آمازون، هزینه خدمات خود را به طور مداوم کاهش می‌دهند، هزینه‌های نگهداشت هوش مصنوعی، مقرون به صرفه است. همچنین بازده محاسبات روی جی.پی.یو، خیلی بیشتر از روش‌های دیگر است. به همین خاطر هم بسیاری از فناوری‌ها، می‌کوشند که به نحوی از این فناوری بهره‌مند شوند.

نقشه‌هایی که گوگل برای رایانش کوانتومی در سر دارد

شبیه‌سازی انرژی مولکول هیدروژن
نقشه‌هایی که گوگل برای رایانش کوانتومی در سر دارد
محاسبات کوانتومی آماده شده‌اند تا تغییرات اساسی در زندگی ما به‌وجود آورند. به‌نظر می‌رسد گوگل در این زمینه برنامه‌ریزی‌های طولانی‌مدتی انجام داده است. رهبر تیم محاسبات کوانتومی گوگل به‌دنبال آن است تا یک کامپیوتر کوانتومی دیجیتالی را طراحی کند.

این مطلب یکی از مجموعه مقاله‌های پرونده ویژه «کامپیوترهای کوانتومی» است که در شماره ۱۸۹ ماهنامه شبکه منتشر شد. برای دانلود این پرونده ویژه می‌توانید اینجا کلیک کنید. 

او در این ارتباط گفته است: «زمانی که یک کامپیوتر کوانتومی دیجیتالی در اختیار داشته باشید، این توانایی را دارید تا آن ‌را برای هر مشکلی که در نظر دارید این کامپیوتر آن‌ را حل کند، برنامه‌ریزی کنید.» اما گوگل به دو دستاورد خیلی مهم در حوزه محاسبات کوانتومی دست پیدا کرد. شبیه‌سازی انرژی یک مولکول و همچنین پیاده‌سازی سیستم‌ رمزنگاری جدیدی که برای مقابله با چالش‌های رمزنگاری طراحی شده است در کنار طراحی یک کامپیوتر کوانتومی 48 بیتی از مهم‌ترین دستاوردهای گوگل در حوزه محاسبات کوانتومی به‌شمار می‌رود. ما در این مقاله به‌طور مختصر و کوتاه به این دستاوردهای گوگل نگاهی خواهیم داشت. 


مطلب پیشنهادی

کوانتوم محدودیت‌ها را درهم می‌شکند
مقدمه پرونده ویژه کامپیوترهای کوانتومی

جان مارتینی استاد فیزیک دانشگاه سانتا باربارا که رهبری آزمایشگاه محاسبات کوانتومی گوگل را بر عهده دارد، به‌دنبال آن است تا مشکلات واقعی جهان امروز را حل کند. او بر این باور است که در پنج تا ده سال آینده گوگل موفق به طراحی کامپیوتر کوانتومی قدرتمندی خواهد شد که نه تنها مسائل پیچیده ریاضی را حل خواهد کرد، بلکه به مردم در اخذ یک سری تصمیمات کمک می‌کند. اما برای این منظور کامپیوتر کوانتومی گوگل باید از تعداد زیادی کوبیت استفاده کند. مارتینی در اولین گام سال گذشته میلادی (2016) همراه با تیم تحت سرپرستی خود موفق شد 9 بیت کوانتومی (کوبیت) را طراحی کند. اکنون او در نظر دارد این مقدار را به رقم 100 کوبیت در چند سال آینده بسط دهد. مارتینی در این ارتباط گفته است: «محاسبات کلاسیک بر مبنای ذخیره‌سازی و دستکاری بیت‌های ساده اطلاعات رفتار می‌کنند. جایی که در یک لحظه با صفرها یا یک‌ها سر و کار دارید. در محاسبات کوانتومی از قوانینی که بر دنیای مکانیک کوانتوم حکم‌فرما است به‌منظور ساخت بیت‌هایی که می‌توانند هر دو مقدار صفر یا یک را در یک لحظه در اختیار داشته باشند استفاده می‌کنیم. این‌ کار به ما اجازه می‌دهد پردازش‌های موازی را روی ماشین‌ها ایجاد کنیم. در نتیجه به‌جای آنکه یک الگوریتم حالت صفر را اجرا کرده و سپس حالت یک را اجرا کرده و در ادامه جواب را در اختیار ما قرار دهد، به‌طور هم‌زمان دو مقدار صفر و یک را اجرا می‌کند. این رویکرد باعث می‌شود تا سرعت محاسبات دو برابر شود. 


واکنش‌های شیمیایی که در طبیعت انجام می‌شوند کوانتومی هستند، به‌سبب آنکه این واکنش‌ها حالات انطباقی کوانتومی بسیار درهم تنیده دارند. در نتیجه این امکان وجود ندارد تا هر حالت ذره را به‌صورت مستقل از ذرات دیگر تشریح کرد


در نتیجه با هر بار اضافه کردن کوبیت‌ها قدرت و سرعت محاسبات افزایش پیدا می‌کند، به‌طوری که یک روند تصاعدی پیدا خواهد کرد. این حرف به‌معنای آن است که اگر 300 کوبیت در اختیار داشته باشید، ضریب توانمندی محاسبات شما به رقم 2 به توان 300 افزایش پیدا خواهد کرد. شما در دنیای محاسبات کلاسیک نمی‌توانید به چنین توانمندی در محاسبات دست پیدا کنید.»

شبیه‌سازی انرژی یک مولکول با استفاده از یک کامپیوتر کوانتومی
شاید بزرگ‌ترین دستاورد مهندسان گوگل در ارتباط با محاسبات کوانتومی در شبیه‌سازی مولکول هیدروژن خلاصه شود. بسیاری از کارشناسان، این موفقیت گوگل را نقطه عطفی، در محاسبات کوانتومی توصیف کرده‌اند. آن‌ها برای نخستین بار موفق شدند یک شبیه‌سازی کوانتومی گسترش‌پذیر را در ارتباط با یک مولکول هیدروژن با موفقیت به سرانجام برسانند. این دستاورد گوگل به ما کمک خواهد کرد تا با اتکا به محاسبات کوانتومی از اسرار دنیای شیمی که پیرامون ما قرار دارند پرده برداریم. پژوهشگرانی که با تیم گوگل کار می‌کردند این توانایی را داشتند تا به دقت انرژی مولکول‌های هیدروژن H2 را شبیه‌سازی کنند. اگر بتوانیم چنین رویکردی را در ارتباط با سایر مولکول‌ها مورد استفاده قرار دهیم، آن‌گاه از سلول‌های خورشیدی گرفته تا پزشکی به موفقیت‌های چشم‌گیری دست پیدا خواهیم کرد. این چنین پیش‌بینی‌هایی برای کامپیوترهای سنتی غیر ممکن بوده یا باید زمان بسیار زیادی را صرف چنین فعالیتی کنند. به‌طور مثال، یک ابرکامپیوتر برای آنکه بتواند انرژی مولکول پروپان (C3H8) را شبیه‌سازی کند، به ده روز زمان نیاز دارد. 
دستیابی به چنین شاهکاری ماحصل همکاری مشترک گروهی از مهندسان گوگل با پژوهشگران دانشگاه‌ هاروارد، آزمایشگاه ملی لارنس بارکلی، دانشگاه کالیفرنیا باربارا، دانشگاه تافنز و دانشگاه کالج لندن بود. رایان بابوش مهندس نرم‌افزار در واحد کوانتومی گوگل در این ارتباط گفته است: «شما این توانایی را دارید تا انرژی مولکول هیدروژن را به‌صورت کلاسیک مورد محاسبه قرار دهید، اما این ‌کار به‌شکل ناکارآمدی انجام خواهد گرفت. در مقابل با یک سخت‌افزار کوانتومی این توانایی را دارید تا سیستم‌های بزرگ‌تر شیمیایی را نیز شبیه‌سازی کنید.» 
واکنش‌های شیمیایی که در طبیعت انجام می‌شوند کوانتومی هستند، به‌سبب آنکه این واکنش‌ها حالات انطباقی کوانتومی بسیار درهم تنیده دارند. در نتیجه این امکان وجود ندارد تا هر حالت ذره را به‌صورت مستقل از ذرات دیگر تشریح کرد. همین موضوع باعث می‌شود کامپیوترهای کلاسیک که با مقادیر باینری سنتی متشکل از صفرها و یک‌ها سر و کار دارند، در شبیه‌سازی این حالات با مشکل روبه‌رو شوند. اما در مقابل کامپیوترهای کوانتومی همچون نمونه‌ای که گوگل از آن استفاده کرده است با کوبیت‌ها سر و کار دارند. کوبیت‌ها این پتانسیل را دارند تا در حالت (برهم‌نهی) قرار بگیرند. در نتیجه این توانایی را دارند تا به‌طور هم‌زمان مقادیر صفر و یک را نشان دهند. برای انجام این شبیه‌سازی مهندسان گوگل از یک فوق مدار محاسبات کوانتومی موسوم به حل‌کننده کوانتومی متغیر (VQE) (سرنام Variational quantum Eigensolver) استفاده کردند. سامانه مورد استفاده از سوی گوگل در اصل یک سیستم‌ مدل‌سازی بسیار پیشرفته است که تلاش می‌کند سیستم عصبی مغز انسان را بر مبنای رویکردهای کوانتومی شبیه‌سازی کند. همان‌ گونه که در شکل 1 مشاهده می‌کنید، منحنی نتایج به‌دست آمده از VQE با انرژی واقعی آزاد شده از مولکول هیدروژن کاملاً منطبق بوده است.

شکل 1- شبیه‌سازی انرژی مولکول هیدروژن به‌شکل دقیقی انجام شد.

بابوش در بخشی از صحبت‌های خود گفته است: «همان‌ گونه که از شبیه‌سازی توصیفی و کیفی شیمیایی به‌سمت شبیه‌سازی کیفی و قابل پیش‌بینی در حال حرکت هستیم، این پتانسیل را در اختیار داریم تا این حوزه از علم را به‌سمت مدرنیزه شدن سوق دهیم.» ما هنوز در ابتدای مسیر قرار داریم و فقط توانسته‌ایم نوک کوه یخ را مشاهده کنیم. گوگل در این ارتباط گفته است: «ما هنوز در ابتدای مسیر مدل‌سازی جهان هستی هستیم. اما این قابلیت را در اختیار داریم تا از تکنیک شبیه‌سازی در ارتباط با تمام سیستم‌هایی که به‌نوعی با شیمی در ارتباط هستند استفاده کنیم. بهبود کیفیت باتری‌ها، تجهیزات الکتریکی انعطاف‌پذیر، بررسی اشکال جدیدی از مواد وغیره از جمله حوزه‌هایی هستند که با شبیه‌سازی کوانتومی تغییرات بنیادینی را تجربه خواهند کرد.»

دفاع از سامانه‌های رمزنگار در برابر تهدیدات محاسبات کوانتومی 
همان ‌گونه که در مقاله چالش‌های امنیتی محاسبات کوانتومی به آن اشاره کردم، با فراگیر شدن این محاسبات در مقیاس کلان و درست زمانی که کامپیوترهای کوانتومی از کوبیت‌های بسیار زیادی استفاده کنند، دیگر نمی‌توان از الگوریتم‌های رمزنگار سنتی استفاده کرد. برای حل این مشکل گوگل به‌دنبال آن است تا الگوریتم‌ رمزنگار پساکوانتومی ویژه خود را آماده کند. با توجه به سابقه این شرکت در ارتباط با ارائه فناوری‌های زیرساختی (پروتکل اسپیدی که از آن به‌عنوان پدر پروتکل HTTP 2.0 نام برده می‌شود) می‌توانیم امیدوار باشیم که الگوریتم ارائه شده از سوی گوگل این پتانسیل را خواهد داشت تا در مقیاس کلان مورد استفاده قرار گیرد. 
گوگل برای آنکه اطمینان حاصل کند مرورگرش دچار چالش‌های امنیتی نخواهد شد، به‌دنبال توسعه چنین الگوریتم‌هایی است. الگوریتم‌هایی که به احتمال زیاد از کروم در برابر هکرها و حتی محاسبات کدگشای کوانتومی محافظت به عمل خواهند آورد. مت بریث‌ویت از مهندسان شرکت گوگل در این ارتباط گفته است: «امروزه این فرضیه مطرح شده است که کامپیوترهای کوانتومی بدون هیچ مشکلی قادر خواهند بود به تمام ارتباطات اینترنتی نفوذ کرده و کدگذاری‌های قدرتمند امروزی را به‌سادگی در هم شکسته و به اطلاعاتی دست پیدا کنند که برای چند دهه محرمانه بودند.


امروزه این فرضیه مطرح شده است که کامپیوترهای کوانتومی بدون هیچ مشکلی قادر خواهند بود به تمام ارتباطات اینترنتی نفوذ کرده و کدگذاری‌های قدرتمند امروزی را به‌سادگی در هم شکسته و به اطلاعاتی دست پیدا کنند که برای چند دهه محرمانه بودند. بر همین اساس از هم‌اکنون باید به فکر چاره مشکلاتی باشیم که در چند سال آینده به‌وجود خواهد آمد


بر همین اساس از هم‌اکنون باید به فکر چاره مشکلاتی باشیم که در چند سال آینده به‌وجود خواهد آمد.» بر همین اساس گوگل به‌صورت آزمایشی بخش کوچکی از مکانیسم‌های ارتباطی که میان مرورگر کروم در کامپیوترهای دسکتاپ و سرورهای گوگل برقرار می‌شود را با سامانه رمزنگار پساکوانتومی رمزنگاری کرده است. سامانه‌ای که از الگوریتم رمزنگاری منحنی بیضوی استفاده می‌کند. گوگل بازه زمانی دو ساله را برای آزمایش این الگوریتم در نظر گرفته است. با پایان یافتن این زمان (سال 2017) و بررسی نقاط قوت و ضعف این الگوریتم، گوگل در سال آینده میلادی (2018) سامانه بهتری را جایگزین آن می‌کند. 

گوگل چه برنامه‌ای برای آینده دارد؟
جان مارتینی در این ارتباط گفته است: «ما در حال طراحی یک کامپیوتر کوانتومی بر مبنای بازپخت کوانتومی شبیه به کامپیوتر کوانتومی شرکت دی‌‌ویو هستیم که در سال 2013 آن‌ را خریداری کردیم. اما از رویکرد متفاوتی نسبت به شرکت دی‌ویو سیستمز استفاده می‌کنیم. آن‌ها به‌طور پیوسته کوبیت‌های بیشتر و بیشتری را اضافه می‌کنند بدون آنکه از بابت انسجام کوبیت‌ها نگرانی داشته باشند. ما بر این باور هستیم که اتخاذ چنین رویکردی نمی‌تواند لزوماً به‌معنای قدرت بیشتر باشد. بازپخت کوانتومی به شما اجازه می‌دهد از طریق پیدا کردن راه ‌حل‌های مصرف حداقل انرژی مشکلات مربوط به بهینه‌سازی یک سیستم را حل کنید.
 این رویکرد به‌ویژه در ارتباط با یادگیری ماشینی مفید است. جایی که در تلاش هستید حداقل عملکردها را در ارتباط با پردازش حجم انبوهی از اطلاعات در اختیار شبکه عصبی قرار دهید. یک کامپیوتر کلاسیک معمولی می‌تواند با یک سامانه کوانتومی 40 تا 45 کوبیتی رقابت کند. در نتیجه در مقطع فعلی دست یافتن به چنین کامپیوتری ایده‌آل به‌نظر می‌رسد. اما در پنج تا ده سال آینده سعی خواهیم کرد مشکلات واقعی جهان را با سامانه‌های قدرتمندتری حل کنیم. این کامپیوترها در شرایط مختلفی می‌توانند به مردم کمک کنند، دستیابی به چنین فناوری قدرتمندی واقعاً سخت است، اما در تلاش هستیم به چنین فناوری دست پیدا کنیم.»