واحد مشترک کمکی پژوهش و مهندسی «هوش یار-تواندار»     (HT-CSURE)

واحد مشترک کمکی پژوهش و مهندسی «هوش یار-تواندار» (HT-CSURE)

Hooshyar-Tavandar Common Subsidiary Unit for Research & Engineering
واحد مشترک کمکی پژوهش و مهندسی «هوش یار-تواندار»     (HT-CSURE)

واحد مشترک کمکی پژوهش و مهندسی «هوش یار-تواندار» (HT-CSURE)

Hooshyar-Tavandar Common Subsidiary Unit for Research & Engineering

بیل گیتس: هوش مصنوعی بزودی می‌تواند به کودکان آموزش دهد

بیل گیتس: هوش مصنوعی حداکثر تا ۱۸ ماه دیگر می‌تواند به کودکان خواندن یاد دهد
به گفته‌ی بیل گیتس، اگر فقط ۱۸ ماه آینده را درنظر بگیرید، هوش مصنوعی می‌تواند در این مدت به‌عنوان دستیاری برای آموزگاران مورد استفاده قرار گیرد و پس‌از آن توانایی ما را در ریاضیات تقویت خواهد کرد.
به‌گفته‌ی بیل گیس، هوش مصنوعی می‌تواند در آینده‌ی نزدیک مثل بهترین معلم‌های انسانی در امور آموزش مورد استفاده قرار گیرد.
 
به گزارش زومیت؛ بیل گیتس، یکی از بنیان‌گذاران مایکروسافت پیش‌بینی کرده است هوش مصنوعی طی چند سال آینده قادر خواهد بود عملکردی در سطح بهترین معلم‌های انسانی ارائه دهد.
 
گیتس در سخنرانی اخیرش که با موضوع یادگیری دیجیتال در سن‌دیگو برگزار شده بود اعلام کرد: «ما از اینکه هوش مصنوعی چگونه می‌تواند در آموزش خواندن مؤثر باشد شگفت‌زده شده‌ایم.»
 
به گفته‌ی گیتس، اگر فقط ۱۸ ماه آینده را درنظر بگیرید، هوش مصنوعی می‌تواند در این مدت به‌عنوان دستیاری برای آموزگاران مورد استفاده قرار گیرد و پس‌از آن توانایی ما را در ریاضیات تقویت خواهد کرد.
 
این اولین‌بار است که گیتس هیجان واقعی خود را در مورد فناوری هوش مصنوعی اعلام می‌کند. او ماه گذشته در وبلاگ خود نوشت: «عصر هوش مصنوعی آغاز شده و GPT شرکت OpenAI انقلاب بزرگی در مدل‌های زبان بزرگ است.» به‌نظر گیتس، همه‌ی محدودیت‌های کنونی هوش مصنوعی خیلی زود از بین خواهند رفت.
 
فیوچریسم می‌نویسد، بیل گیتس بیش‌از دودهه پیش‌ طی مصاحبه با نیویورک‌تایمز، درمورد یادگیری ماشینی صحبت کرده و دیدگاه آینده‌نگرانه‌اش را درمورد فناوری مذکور ارائه داده است. او سال ۲۰۰۴ اعلام کرده بود اگر پیشرفتی در هوش مصنوعی ابداع شود تا ماشین‌ها بتوانند موارد جدیدی را یاد بگیرند، چنین فناوری جذابی ده‌ برابر مایکروسافت ارزش خواهد داشت.
 
گیتس سال ۲۰۱۹ در استارتاپ Luminous سرمایه‌گذاری کرد؛ شرکتی که قصد دارد تراشه‌ی شتاب‌دهنده‌ی هوش مصنوعی مبتنی‌بر نور تولید کند. این نوع تراشه‌ها احتمالاً توان پردازشی ابررایانه‌های موردنیاز برای هوش مصنوعی آینده را تأمین خواهند کرد.
 
بیل گیتس باور دارد ما واقعاً به مرز جهش کوانتومی واقعی در فناوری هوش مصنوعی نزدیک شده‌ایم و چشم‌انداز کلی مثبتی نسبت‌به آینده‌ی این تکنولوژی دارد.

ارزیابیهایی درباره برخی پیآوردهای هوش مصنوعی 2

محتمل‌ترین نتیجه هوش مصنوعی فوق‌العاده هوشمند: همه خواهیم مرد!
"الیزر یودکوفسکی" می‌گوید بشریت برای زنده ماندن از رویارویی با هوش مصنوعی بسیار هوشمندتر آماده نیست.
یک محقق برجسته هوش مصنوعی هشدار داد که متوقف کردن توسعه سیستم‌های هوش مصنوعی پیشرفته در سراسر جهان و مجازات شدید افرادی که این مهلت قانونی را نقض می‌کنند تنها راه نجات بشریت از انقراض است.
 
به گزارش فرارو به نقل از راشاتودی؛ "الیزر یودکوفسکی" یکی از بنیانگذاران موسسه تحقیقاتی هوش ماشینی (MIRI) روز چهارشنبه در مقاله‌ای نظری برای نشریه "تایم" توضیح داد که چرا طوماری را امضا نکرده است که از تمام آزمایشگاه‌های هوش مصنوعی می‌خواهد که فورا حداقل برای شش ماه آموزش سیستم‌های هوش مصنوعی قوی‌تر از جی پی تی -۴ (یک مدل زبان بزرگ چند وجهی است که اوایل ماه جاری توسط Open AI منتشر شد) را متوقف کنند.
 
یودکوفسکی استدلال کرد که نامه امضا شده توسط افرادی مانند ایلان ماسک و استیو وزنیاک مدیر اپل برای حل مشکلی که به دلیل توسعه سریع و کنترل نشده هوش مصنوعی ایجاد می‌شود بسیار ناچیز است.
 
 
محتمل‌ترین نتیجه هوش مصنوعی فوق‌العاده هوشمند: همه خواهیم مرد!
الیزر یودکوفسکی؛ محقق برجسته هوش مصنوعی
 
او نوشت: "محتمل‌ترین نتیجه ساخت یک هوش مصنوعی فوق العاده هوشمند تحت هر چیزی که از راه دور مانند شرایط کنونی باشد این است که به معنای واقعی کلمه همه روی زمین خواهند مرد".
 
او استدلال کرد که زنده ماندن از رویارویی با یک سیستم کامپیوتری که "نه برای ما و نه به طور کلی برای زندگی حساس" است به "دقت و آمادگی و بینش‌های علمی جدید" نیاز دارد که بشر در حال حاضر فاقد آن می‌باشد و بعید به نظر می‌رسد در آینده قابل پیش بینی نیز به آن دست یابد.
 
یودکووسکی هشدار داد: "یک هوش مصنوعی به اندازه کافی هوشمند برای مدت طولانی در رایانه محصور نخواهد شد". او توضیح داد که این واقعیت که امکان ارسال رشته‌های DNA به آزمایشگاه‌ها برای تولید پروتئین وجود دارد احتمالا به هوش مصنوعی این امکان را می‌دهد که اشکال حیات مصنوعی را بسازد یا مستقیما به سمت تولید مولکولی پسا بیولوژیکی حرکت کند و به جهان راه یابد.
 
به گفته این محقق یک مهلت نامعلوم و جهانی برای دوره‌های آموزشی اصلی جدید هوش مصنوعی باید فورا معرفی شود. او تاکید کرد: "هیچ استثنایی نمی‌تواند وجود داشته باشد از جمله برای دولت‌ها یا ارتش‌ها".
 
یودوفسکی تاکید کرده که قرارداد‌های بین‌المللی باید امضا شوند تا سقفی در مورد میزان قدرت محاسباتی که هر فردی ممکن است از آن در آموزش چنین سیستم‌هایی استفاده کند تعیین شود.
 
او در مقاله اشاره کرده که تهدید هوش مصنوعی به قدری زیاد است که باید "در دیپلماسی بین المللی به صراحت اعلام شود که جلوگیری از سناریو‌های انقراض توسط هوش مصنوعی اولویتی بالاتر از جلوگیری از تبادل کامل هسته‌ای است".

ببینید | چرا هوش مصنوعی ترسناک شده است؟!
هوش مصنوعی وسیله‌ای است برای رشد و پیشرفت، اما مثل همه فناوری‌های دیگر سکه‌ای است که روی دیگری هم دارد و می‌تواند بسیار خطرناک باشد.

به زودی درک هوش مصنوعی برای انسان غیرممکن خواهد شد

به زودی درک هوش مصنوعی برای انسان غیرممکن خواهد شد
وقتی صحبت از هوش مصنوعی قابل توضیح و شفاف به میان می‌آید داستان شبکه‌های عصبی به ما می‌گوید که احتمالا در آینده به جای نزدیک شدن از آن هدف دور خواهیم شد.
 "جک دی کُوان" ریاضیدان و زیست شناس نظری در سال ۱۹۵۶ میلادی در جریان یک سفر یک ساله به لندن و در اوایل دهه ۲۰ زندگی اش با "ویلفرد تیلور" ملاقات کرد و ماشین یادگیری تازه او را از نزدیک مشاهده نمود. او در بدو ورود از مشاهده "بانک عظیم ماشین یادگیری" که با آن مواجه شده بود گیج شد.

به گزارش فرارو به نقل از کانورسیشن؛ کوان تنها می‌توانست بایستد و ماشینی که خود در حال انجام کارش بود را تماشا کند کاری که به نظر می‌رسید انجام می‌داد اجرای یک "طرح حافظه انجمنی" بود به نظر می‌رسید که می‌توانست یاد بگیرد که چگونه اتصالات را پیدا کند و داده‌ها را مورد بازیابی قرار دهد.
شاید شبیه بلوک‌های مدار ناهمواری به نظر می‌رسید که با دست در انبوهی از سیم‌ها و جعبه‌ها به هم لحیم شده‌اند، اما چیزی که کوان شاهد آن بود یک شکل مشابه اولیه از یک شبکه عصبی به نظر می‌رسید یک پیشرو برای پیشرفته‌ترین هوش مصنوعی امروزی از جمله چت جی پی تی (Chat GPT) که به دلیل توانایی در تولید محتوای نوشتار در پاسخ به تقریبا هر دستوری بسیار مورد بحث قرار گرفته است. فناوری زیربنایی چت جی پی تی یک شبکه عصبی است.
 همان طور که کوان و تیلور ایستاده بودند و کار ماشین را تماشا می‌کردند واقعا نمی‌دانستند که چگونه این کار را انجام می‌دهد. پاسخ به مغز ماشین مرموز تیلور را می‌توان جایی در "نورون‌های آنالوگ" در ارتباط‌های ایجاد شده توسط حافظه دستگاه آن و مهم‌تر از همه در این واقعیت یافت که عملکرد خودکار آن را واقعا نمی‌توان به طور کامل توضیح داد. دهه‌ها به طول می‌انجامد تا این سیستم‌ها هدف خود را پیدا کنند و آن قدرت باز شود.
 
اصطلاح "شبکه عصبی" طیف گسترده‌ای از سیستم‌ها را در بر می‌گیرد، اما به طور مرکزی به گفته IBM این شبکه‌های عصبی هم چنین به عنوان شبکه‌های عصبی مصنوعی (ANN) یا شبکه‌های عصبی شبیه سازی شده (SNN) شناخته می‌شوند که زیرمجموعه‌ای از یادگیری ماشین هستند و در قلب الگوریتم‌های یادگیری عمیق قرار دارند. مهم این است که خود این اصطلاح و شکل و ساختار آن از مغز انسان الهام گرفته شده و از روشی که نورون‌های بیولوژیکی به یکدیگر سیگنال می‌دهند تقلید می‌کند.
 
ممکن است در مراحل اولیه شک و تردیدی در مورد ارزش آن وجود داشته باشد، اما با گذشت سال‌ها مُدهای هوش مصنوعی به شدت به سمت شبکه‌های عصبی حرکت کرده اند. اکنون اغلب تصور می‌شود که آن‌ها آینده هوش مصنوعی هستند. آن‌ها پیامد‌های بزرگی برای ما و معنای انسان بودن دارند. ما اخیرا پژواک این نگرانی‌ها را شنیده‌ایم و درخواست‌هایی به منظور توقف توسعه‌های جدید هوش مصنوعی برای یک دوره شش ماهه به منظور کسب اطمینان از پیامد‌های آن مطرح شده اند.
 
مطمئنا اشتباه است که شبکه عصبی را صرفا به عنوان ابزار‌های جدید براق و چشم نواز رد کنیم. آنان در حال حاضر به خوبی در زندگی ما جا افتاده‌اند. برخی در عملی بودن خود قدرتمند هستند. اطلاعیه اخیر مایکروسافت مبنی بر آن که جستجو‌های موتور جستجوی بینگ با مجهز شدن به هوش مصنوعی تقویت می‌شود و این که آن را به کمک خلبانی برای وب تبدیل می‌کند نشان می‌دهد که چگونه چیز‌هایی که ما کشف کرده و درک می‌کنیم محصول این نوع اتوماسیون (خودکاری شدن) هستند.
 
هوش مصنوعی با استفاده از داده‌های گسترده برای یافتن الگو‌ها می‌تواند به طور مشابه برای انجام کار‌هایی مانند تشخیص تصویر با سرعت آموزش داده شود. برای مثال، آن را در تشخیص چهره ادغام می‌کند. این توانایی در شناسایی الگو‌ها منجر به کاربرد‌های بسیار دیگری مانند پیش بینی بازار‌های سهام شده است.
 
شبکه‌های عصبی نحوه تفسیر و ارتباط ما را نیز تغییر می‌دهند. گوگل ترنسلیت (مترجم گوگل ) که توسط تیم مغز گوگل توسعه یافته است یکی دیگر از برنامه‌های برجسته شبکه عصبی است.
 
لایه‌های مرموز "ناشناختنی"
نگاهی به تاریخچه شبکه‌های عصبی به ما نکته مهمی در مورد تصمیمات خودکاری که زمانه فعلی ما را تعریف می‌کنند یا تصمیماتی که احتمالا تاثیر عمیق تری در آینده خواهند داشت را می‌گویند. حضور آن‌ها هم چنین می‌گوید که ما احتمالا تصمیمات و تاثیرات هوش مصنوعی را در طول زمان حتی کمتر درک می‌کنیم. این سیستم‌ها صرفا جعبه‌های سیاه نیستند آن صرفا قطعات مخفی یک سیستم نیستند که قابل مشاهده یا درک نباشند.
 این چیزی متفاوت است چیزی که ریشه در اهداف و طراحی خود این سیستم‌ها دارد. یک تعقیب طولانی مدت وجود دارد. هرچه غیر شفاف‌تر باشد سیستم معتبرتر و پیشرفته‌تر تصور می‌شود. این صرفا در مورد پیچیده‌تر شدن سیستم‌ها یا محدود کردن دسترسی به کنترل مالکیت معنوی نیست (اگرچه این موارد بخشی از آن هستند). در عوض، می‌توان گفت اخلاقی که آن‌ها را هدایت می‌کند علاقه‌ای خاص و نهفته به "ناشناخته ماندن" دارد.
 این رمز و راز حتی در قالب و گفتمان شبکه عصبی رمزگذاری شده است. آن‌ها دارای لایه‌های عمیق انباشته شده هستند از این رو عبارت یادگیری عمیق و در درون آن اعماق "لایه‌های پنهان" حتی اسرارآمیزتر هستند. اسرار این سیستم‌ها در اعماق زیر سطح قرار دارند.
 
این احتمال وجود دارد که هر چه تاثیر هوش مصنوعی در زندگی ما بیش‌تر باشد کمتر متوجه چگونگی و چرایی آن شویم. امروزه فشاری قوی برای قابل توضیح شدن هوش مصنوعی وجود دارد. ما می‌خواهیم بدانیم هوش مصنوعی چگونه کار می‌کند و چگونه به تصمیمات و نتایج می‌رسد.
 
اتحادیه اروپا به قدری نگران "خطرات غیرقابل قبول" و حتی برنامه‌های کاربردی "خطرناک" است که در حال حاضر در حال پیشبرد قانون جدید هوش مصنوعی با هدف تعیین "استاندارد جهانی" برای "توسعه هوش مصنوعی ایمن، قابل اعتماد و اخلاقی" می‌باشد. اتحادیه اروپا در این باره نگرانی دارد که سیستم‌هایی که در آینده ظهور می‌کنند پیامد‌هایی برای حقوق بشر داشته باشند.
 
این بخشی از فراخوان‌های گسترده‌تر برای شفافیت در حوزه هوش مصنوعی است تا بتوان فعالیت‌های آن را بررسی، ممیزی و ارزیابی کرد. مثال دیگر، جلسه توجیهی انجمن سلطنتی بریتانیا در مورد هوش مصنوعی قابل توضیح است که در آن اشاره شده که "مناظره‌های مرتبط با سیاستگذاری در سراسر جهان به طور فزاینده‌ای نیاز به نوعی توضیح پذیری هوش مصنوعی دارند".
 با این وجود، داستان شبکه‌های عصبی به ما می‌گوید که احتمالا در آینده به جای نزدیک‌تر شدن از آن هدف دورتر خواهیم شد.
 
با الهام از مغز انسان
 این شبکه‌های عصبی ممکن است سیستم‌های پیچیده‌ای باشند، اما برخی از اصول اصلی را دارند. آن‌ها با الهام از مغز انسان به دنبال کپی یا شبیه سازی اشکال تفکر بیولوژیکی و انسانی هستند. از نظر ساختار و طراحی همانطور که IBM نیز توضیح می‌دهد از "لایه‌های گره، حاوی یک لایه ورودی، یک یا چند لایه پنهان و یک لایه خروجی" تشکیل شده اند و هرگره یا نورون مصنوعی به گره یا نورون مصنوعی دیگری متصل می‌شود. از آنجایی که آن‌ها برای ایجاد خروجی‌ها به ورودی‌ها و اطلاعات نیاز دارند "به داده‌های آموزشی برای یادگیری و بهبود دقت خود در طول زمان متکی هستند".
 این جزئیات فنی مهم هستند، اما تمایل به مدل سازی این سیستم‌ها بر اساس پیچیدگی‌های مغز انسان نیز اهمیت دارد. درک جاه طلبی پشت این سیستم‌ها برای درک آن چه که این جزئیات فنی به همراه دارند حیاتی می‌باشد.
 
"تئو کوهونن" دانشمند شبکه عصبی در مصاحبه‌ای در سال ۱۹۹۳ میلادی به این نتیجه رسیده بود که یک سیستم "خودسازمانده" "رویای من است" که "چیزی شبیه به آن چه که سیستم عصبی ما به طور غریزی انجام می‌دهد" خواهد بود. برای مثال کوهونن این تصور را مطرح کرد که چگونه یک سیستم "خودسازماندهی" سیستمی که خود را نظارت و مدیریت می‌کند "می تواند به عنوان یک تابلوی نظارت برای هر ماشینی در هر هواپیما یا هر نیروگاه هسته‌ای استفاده شود". او فکر می‌کرد که این بدان معناست که در آینده "شما می‌توانید بلافاصله ببینید که سیستم در چه شرایطی قرار دارد".
 
هدف اصلی این بود که سیستمی داشته باشیم که بتواند با محیط اطراف خود سازگار شود. آن رویا این بود که سیستم‌هایی بتوانند بدون نیاز به دخالت زیاد انسان خود را مدیریت کنند و این که پیچیدگی‌ها و ناشناخته‌های مغز سیستم عصبی و دنیای واقعی به زودی به توسعه و طراحی شبکه‌های عصبی می‌رسند.
 
چیزی عجیب در مورد آن با این وجود، با بازگشت به سال ۱۹۵۶ میلادی و آن ماشین یادگیری عجیب این رویکرد عملی که تیلور هنگام ساخت آن اتخاذ کرده بود بلافاصله توجه کوان را به خود جلب کرد. کوان در مصاحبه‌ای گفت که تیلور کار را براساس تئوری و روی رایانه انجام نداده در عوض با استفاده از ابزار‌هایی که در دست داشته در واقع با استفاده از سخت افزار کار را انجام داده بود. این یک چیز مادی بود ترکیبی از قطعات شاید حتی یک ابزار. کوان خاطرنشان می‌کند که "همه کار‌ها با مدار‌های آنالوگ انجام شد چندین سال به طول انجامید تا تیلور آن را بسازد و با آن بازی کند". در واقع، یک مورد آزمون و خطا بود. قابل درک است که کوان می‌خواست با آن چه می‌دید کنار بیاید.
 
او سعی کرد از تیلور بخواهد که این ماشین یادگیری را برایش توضیح دهد. با این وجود، شفاف سازی‌ای صورت نگرفت و کوان نتوانست تیلور را وادار به توضیح درباره چگونگی کار کند. نورون‌های آنالوگ یک راز باقی ماندند. کوان فکر کرد مشکل شگفت انگیزتر این بود که تیلور "واقعا خود نمی‌دانست که چه اتفاقی در حال رخ دادن است".
 
در مصاحبه‌ای در اواسط دهه ۱۹۹۰ میلادی کوان با فکر کردن به ماشین تیلور فاش ساخت که شما نمی‌توانید کاملا بفهمید که چگونه کار می‌کند. این نتیجه گیری نشان می‌دهد که چگونه ناشناخته‌ها عمیقا در شبکه‌های عصبی جاسازی شده است. غیر قابل توضیح بودن این سیستم‌های عصبی حتی از مراحل اساسی و رشدی که قدمت آن به حدود هفت دهه قبل می‌رسد نیز وجود داشته و این رمز و راز امروزه باقی مانده است و می‌توان آن را در اشکال پیشرفته هوش مصنوعی یافت. غیرقابل درک بودن عملکرد تداعی‌های ایجاد شده توسط دستگاه تیلور کوان را به این فکر واداشت که آیا چیزی در مورد آن وجود دارد؟
 
تقلید از مغز لایه به لایه
 شاید پیش‌تر متوجه شده باشید که هنگام بحث در مورد منشاء شبکه‌های عصبی تصویر مغز و پیچیدگی‌هایی که این شبکه‌ها برمی انگیزد هرگز دور از دسترس نیست. مغز انسان به عنوان نوعی الگو برای این سیستم‌ها عمل می‌کند. در مراحل اولیه به ویژه مغز هنوز یکی از ناشناخته‌های بزرگ و الگویی برای نحوه عملکرد شبکه عصبی شد.
 
بنابراین، سیستم‌های آزمایشی جدید بر اساس چیزی که عملکرد آن تا حد زیادی ناشناخته بود مدل‌سازی شدند. "کارور مید" مهندس محاسبات عصبی به طرز آشکاری از مفهوم "کوه یخ شناختی" که برای او جذابیت خاصی پیدا کرده بود صحبت کرده است. این تنها نوک کوه یخ آگاهی است که ما از آن آگاه هستیم و قابل مشاهده است. مقیاس و شکل بقیه بخش‌های کوه یخی در زیر سطح ناشناخته‌ای باقی مانده اند.
 
"جیمز اندرسون" که برای مدتی روی شبکه‌های عصبی کار می‌کرد در سال ۱۹۹۸ میلادی خاطرنشان ساخت که وقتی نوبت به تحقیق روی مغز می‌شود "به نظر می‌رسد کشف اصلی ما آگاهی از این است که واقعا نمی‌دانیم چه اتفاقی رخ می‌دهد".
 
"ریچارد واترز" روزنامه نگار حوزه فناوری در گزارش مفصلی در "فایننشال تایمز" در سال ۲۰۱۸ میلادی اشاره کرد که چگونه شبکه‌های عصبی "بر اساس نظریه‌ای درباره نحوه عملکرد مغز انسان مدل سازی می‌شوند و داده‌ها را از لایه‌هایی از نورون‌های مصنوعی منتقل می‌کنند تا زمانی که یک الگوی قابل شناسایی ظاهر شود".
 
واترز پیشنهاد کرد که این مشکلی را ایجاد می‌کند، زیرا برخلاف مدار‌های منطقی به کار رفته در یک برنامه نرم افزاری سنتی هیچ راهی برای ردیابی این فرآیند برای شناسایی دقیق این که چرا یک رایانه به یک پاسخ خاص می‌رسد وجود ندارد. نتیجه گیری واترز آن است که این نتایج را نمی‌توان حذف کرد. استفاده از این نوع مدل از مغز که داده‌ها را از لایه‌های زیادی می‌گیرد به این معنی است که پاسخ به راحتی قابل ردیابی نیست. چند لایه بودن بخش خوبی از دلیل این امر است.
 
اقتباس کل بازی است
 راز عمیق‌تر می‌شود. همان طور که لایه‌های شبکه‌های عصبی انباشته شده‌اند پیچیدگی آن‌ها افزایش یافته است. هم‌چنین منجر به رشد لایه‌های پنهان در این اعماق شده است. بحث در مورد تعداد بهینه لایه‌های پنهان در یک شبکه عصبی ادامه دارد.
 
به دلیل نحوه عملکرد یک شبکه عصبی عمیق با تکیه بر لایه‌های عصبی پنهان که بین اولین لایه نورون‌ها (لایه ورودی) و آخرین لایه (لایه خروجی) قرار گرفته اند تکنیک‌های یادگیری عمیق هستند و حتی برای برنامه نویسانی که در ابتدا آن‌ها را تنظیم کرده اند اغلب مبهم یا ناخوانا هستند.
 
"کاترین هیلز" متفکر برجسته و میان رشته‌ای رسانه‌های نوین با بیان نکته‌ای مشابه خاطرنشان کرد که محدودیت‌هایی برای "تا چه اندازه می‌توانیم درباره سیستم بدانیم"؟ وجود دارد نتیجه‌ای که مربوط به "لایه پنهان" در شبکه عصبی و الگوریتم‌های یادگیری عمیق است.
 
به دنبال چیز‌های غیرقابل توضیح روی هم رفته این تحولات طولانی بخشی از چیزی است که "تاینا بوچر" جامعه شناس فناوری آن را "مشکل ناشناخته" نامیده است.
 
"هری کالینز" با گسترش تحقیقات تاثیرگذار خود در مورد دانش علمی در زمینه هوش مصنوعی اشاره کرده که هدف شبکه‌های عصبی این است که احتمالا در ابتدا توسط یک انسان تولید می‌شوند، اما به محض اینکه برنامه نوشته شود زندگی خود را می‌کنند و نحوه عملکرد برنامه دقیقا می‌تواند مرموز باقی بماند. این وضعیت بازتاب آن رویا‌های دیرینه در مورد یک سیستم خودسازمانده است.
 
این احتمال وجود دارد که هر چه تاثیر هوش مصنوعی در زندگی مان بیش‌تر شود کمتر متوجه چگونگی و چرایی آن شویم. با این وجود، بیان این موضوع در روزگار کنونی خوشایند نیست. ما می‌خواهیم بدانیم هوش مصنوعی چگونه کار می‌کند و چگونه به تصمیمات و نتایجی که بر ما تاثیر می‌گذارد می‌رسد.
 
همان‌طور که پیشرفت‌های هوش مصنوعی به شکل گیری دانش و درک ما از جهان، آن چه کشف می‌کنیم، نحوه رفتار با ما، نحوه یادگیری، مصرف و تعامل ما، ادامه می‌دهد، انگیزه برای درک آن بیش‌تر می‌شود. وقتی صحبت از هوش مصنوعی قابل توضیح و شفاف به میان می‌آید داستان شبکه‌های عصبی به ما می‌گوید که احتمالا در آینده به جای نزدیک شدن از آن هدف دور خواهیم شد.


دیدگاههای تازه گفته بیل گیتس درباره هوش مصنوعی

چرا ChatGPT را احمق جلوه می‌دهید؟!

چرا ChatGPT را احمق جلوه می‌دهید؟!
گروه علمی: بیل گیتس مردم را سرزنش می‌کند که چرا هوش مصنوعی بینگ(Bing) شرکت مایکروسافت را احمق نشان می‌دهند، چرا که وی معتقد است این کاربران هستند که هوش مصنوعی را تحریک می‌کنند تا اشتباه کند و چیزهای دیوانه‌وار بگوید.به گزارش ایسنا، بیل گیتس، یکی از بنیانگذاران شرکت مایکروسافت به هوش مصنوعی ابراز اطمینان کرده و می‌گوید که هیچ تهدیدی برای انسان نیست.
 
این میلیاردر فناور می‌گوید: افراد زیادی وجود دارند که در تلاش هستند تا هوش مصنوعی را احمق نشان دهند، اما [هوش مصنوعی] خوب است و هیچ تهدیدی در مورد آن وجود ندارد.پیش از این، چندین کاربر نسبت به پاسخ‌های چت‌بات هوش مصنوعی ChatGPT در موتور جستجوی «بینگ» مایکروسافت پس از پاسخ دادن به پرسش‌ها به شیوه‌ای نگران‌کننده و دیوانه‌وار ابراز نگرانی کردند. در عین حال، مایکروسافت پس از مطرح شدن شکایات، ربات خود را آموزش داد تا مشکل برطرف شود.
به گفته مایکروسافت، اگر کاربران برای مدت طولانی با Bing صحبت کنند، ممکن است تحریک شود و پاسخ‌های غیرمنتظره بدهد.بیل گیتس در این مصاحبه خاطرنشان کرد که «بینگ» همچنان اشتباه می‌کند و چیزهای احمقانه می‌گوید، اما برای این کار شما باید کمی آن را تحریک کنید.
نقش بزرگ هوش مصنوعی
بیل گیتس فکر می‌کند که اگرچه پیش‌بینی می‌شود هوش مصنوعی منجر به جابجایی‌های زیادی در نیروی کار شود، اما همچنین موجب افزایش کارایی خواهد شد و نقش مهمی در منابع انرژی تجدیدپذیر خواهد داشت.
طبق گفته وی، طی دو سال آینده پیش‌بینی می‌شود که دقت و قابلیت‌های هوش مصنوعی به سرعت افزایش یابد.

گیتس مشارکت فعال خود در خدمات‌دهی شرکت OpenAI به مایکروسافت را فاش کرد که به کسب و کارها امکان می‌دهد از فناوری ChatGPT و سایر قابلیت‌های هوش مصنوعی استفاده کنند. وی می‌گوید: هوش مصنوعی نقش بزرگی ایفا خواهد کرد و من بسیار درگیر هوش مصنوعی توسعه یافته توسط مایکروسافت و OpenAI هستم.
وی افزود: در مورد این ایده که رایانه‌ها قادر به خواندن و نوشتن شوند، هیچ کس نمی‌دانست که چه زمانی به وجود می‌آید و اکنون فرا رسیده است.

ایجاد کنترل بیشتر توسط مایکروسافت
شرکت مایکروسافت به تازگی اعلام کرده است که قابلیت‌های جدیدی را برای ربات هوش مصنوعی خود معرفی می‌کند، از جمله این که کاربران می‌توانند نوع شخصیتی را که می‌خواهند با آن ارتباط برقرار کنند، انتخاب کنند. پس از انتشار ChatGPT  توسط شرکت OpenAI ، رقابت در عرصه راه‌اندازی و توسعه ربات‌های گفتگوگر افزایش یافته است و تقریباً همه شرکت‌های دیجیتال برتر سکوهای رسانه‌های اجتماعی خود را با هوش مصنوعی، ابزارگذاری (مجهز) کرده‌اند.

ظهور کامپیوترهای برپایه سلولهای مغز انسان

ظهور کامپیوترهای مبتنی بر مغز انسان

ظهور کامپیوترهای مبتنی بر مغز انسان
گروه علمی: هوش مصنوعی همه‌جا حضور دارد. این فناوری در برنامه‌های بهره‌وری، بازی‌های ویدیویی، نوشتن مقالات و حتی طراحی تراشه‌های کامپیوتری مورد استفاده قرار می‌گیرد. درحال‌حاضر هوش مصنوعی به‌عنوان نیرویی غیرقابل توقف در نظر گرفته می‌شود اما دانشمندان دانشگاه جان هاپکینز اعتقاد دارند فناوری دیگری وجود دارد که می‌تواند بر آن غلبه کند.
فناوری موردنظر دانشمندان دانشگاه جان هاپکینز، هوش ارگانوئیدی یا OI نامیده می‌شود و برای ایجاد محاسبات شبیه مغز انسان از سلول‌های واقعی مغز انسان بهره می‌برد. OI از ارگانوئیدها یا خوشه‌های بافت زنده‌ی رشدیافته از سلول‌های بنیادی که رفتاری مشابه اندام‌ها دارند بهره می‌برد و به‌عنوان سخت‌افزار بیولوژیکی، سیستم‌های الگوریتمی را نیز تقویت می‌کند. به گفته‌ی محققان جان هاپکینز این فناوری می‌تواند یادگیری پیشرفته‌تر را نسبت‌ به کامپیوترهای معمولی آسان‌تر کند و همین امر باعث ایجاد بازخوردی غنی‌تر و تصمیم‌گیری بهتر نسبت‌ به هوش مصنوعی خواهد شد.

محققان با انتشار مقاله‌ای در مجله‌ی Frontiers in Science یک زیست‌کامپیوتر ساخته‌شده با ارگانوئید مغز را توصیف کرده‌اند که در محیط آزمایشگاهی ساخته شده است. این فناوری به‌لطف بهره‌گرفتن از شکل حجیم‌تر ارگانوئیدهای مغز نسبت‌ به بافت‌های مسطح بین نورون‌ها، سیناپس‌های بیشتری دارد. اکستریم‌تِک می‌نویسد این تیم به‌دنبال راهکاری برای برقراری ارتباط با ارگانوئیدها و ارسال و دریافت اطلاعات از آن‌ها هستند. تیم تحقیقاتی برای دستیابی به هدف خود آزمایشی را روی دستگاه رابط مغز و کامپیوتر انجام می‌دهد. پوسته‌ی انعطاف‌پذیر این دستگاه از الکترودهای کوچک برای دریافت سیگنال از ارگانوئید و ارسال سیگنال به آن‌ها استفاده می‌کند.
درحال‌حاضر هوش OI جان هاپکینز برای ارائه‌ی نتایج موردنظر محققان بسیار کوچک است. ارگانوئیدهای کنونی حدود ۵۰ هزار سلول را درخود جای می‌دهند، درحالی‌که برای کسب نتیجه‌ی دلخواه، باید نزدیک به ۱۰ میلیون سلول را در خود نگه دارند. هنگامی‌ که این ارگانوئیدها به چنین سطحی از سلول‌ها دست یابند، تقریباً حاوی ۱۲۵ تریلیون سیناپس خواهند بود که هرکدام از آن‌ها می‌توانند ۴٫۷ بیت اطلاعات را در خود ذخیره کنند. در مقام مقایسه، سریع‌ترین ابررایانه‌ی جهان ۵۸ میلیارد ترانزیستور دارد که هرکدام از آن‌ها ۴ بیت اطلاعات را ذخیره می‌کنند.

استفاده از سلول‌های مغز انسان برای تأمین انرژی کامپیوترها، پیامدهای اخلاقی آشکاری دارد که محققان نیز آن‌ها را به‌وضوح تأیید می‌کنند. دانشمندان دانشگاه جان هاپکینز در مقاله‌ی خود توضیحاتی درمورد نظارت بر توسعه‌ی فناوری OI و نگرانی‌های مربوط‌ به حفاظت از حریم خصوصی اهداکنندگان سلول‌های بنیادی ارائه داده‌اند.

نظر بیل‌ گیتس درباره آینده هوش مصنوعی و متاورس

نظر بیل‌ گیتس درباره آینده هوش مصنوعی و متاورس
گیتس به سؤال متعاقب یکی از کاربران درباره اینکه چرا به نظرش web3 انقلابی نیست، پاسخ نداد. او صرفاً گفت هیجان زیادی برای هوش مصنوعی زایا دارد: «از نرخ پیشرفت‌های این هوش مصنوعی حیرت‌زده شده‌ام. فکر می‌کنم این فناوری تأثیر بزرگی بر جهان خواهد گذاشت.»
زومیت نوشت: بیل گیتس اخیراً اعلام کرده که به نظرش هوش مصنوعی درحال‌حاضر شبیه به اینترنت در حوالی سال 2000 است.
 
«بیل گیتس»، هم‌بنیان‌گذار مایکروسافت اخیراً درباره شماری از فناوری‌های جدید صحبت و آینده آن‌ها را پیش‌بینی کرده است. او می‌گوید هوش مصنوعی به‌واقع یک فناوری انقلابی است و نقشی شبیه به اینترنت در حوالی سال 2000 را دارد، اما web3 و متاورس به آن اندازه که گفته می‌شود، فناوری‌های انقلابی و بزرگی نیستند.
 
بیل گیتس اخیراً در یک جلسه پرسش‌وپاسخ در ردیت در جواب به این سؤال که آیا درحال‌حاضر هم فناوری بزرگی مثل اینترنت در سال 2000 وجود دارد یا خیر، گفت: «هوش مصنوعی فناوری بزرگ [حال حاضر] است. فکر نمی‌کنم web3 آن‌قدر بزرگ یا متاورس به‌تنهایی انقلابی باشد، اما هوش مصنوعی واقعاً یک فناوری بزرگ و انقلابی است»
 
گیتس به سؤال متعاقب یکی از کاربران درباره اینکه چرا به نظرش web3 انقلابی نیست، پاسخ نداد. او صرفاً گفت هیجان زیادی برای هوش مصنوعی زایا دارد: «از نرخ پیشرفت‌های این هوش مصنوعی حیرت‌زده شده‌ام. فکر می‌کنم این فناوری تأثیر بزرگی بر جهان خواهد گذاشت.»
 
بیل گیتس درباره هوش مصنوعی ChatGPT چه نظری دارد؟
 
هم‌بنیان‌گذار مایکروسافت در پاسخ به این سؤال که چه نظری درباره هوش مصنوعی ChatGPT دارد، نوشت: «این [چت‌بات] نیم‌نگاهی به آینده را برای ما فراهم کرده است. من از این شیوه عملکرد و سرعت نوآوری شگفت‌زده شده‌ام.»
 
با این همه، گیتس اعلام کرد که تمرکز خود را روی امور دیگری گذاشته است. او گفت درحال کار روی فناوری‌های مثل سونوگرافی است که می‌توانند به زنان باردار کمک کنند تا درصورت نیاز به حضور در بیمارستان، این موضوع به اطلاع آن‌ها برسد.
 
بیل گیتس در گذشته هم گفته بود که علاقه‌ای به حوزه رمزارزها ندارد. او در سال 2021 گفته بود کسانی که به‌اندازه ایلان ماسک پول ندارند، باید مراقب سرمایه‌گذاری در این حوزه باشند. هم‌مؤسس مایکروسافت باور داشت که این بازارها براساس نظریه «احمق بزرگ‌تر» پیش می‌روند. بااین‌حال، به‌نظر می‌رسد که دیدگاه او درباره متاورس خوش‌بینانه‌تر است، چرا که در سال 2021 جایگزینی تصاویر دوبعدی با سه‌بعدی در ملاقات‌های مجازی را پیش‌بینی کرده بود.